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AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER
AND SIMILAR CHARACTERISTIC-VALUE PROBLEMS !

By MyroN L. GossarD

SUMMARY

An iterative trangformation procedure suggested by H.
Wielandt for numerical solution of flutter and similar charac-
teristic-value problems is presented. Application of this pro-
cedure to ordinary natural-vibration problems and to flutter
problems is shown by numerical examples. Comparisons of
computed results with experimental values and with results
obtained by other methods of analysis are made.

INTRODUCTION

Existing methods of flutter analysis include the
representative-section method, generalized-coordinate meth-
ods, matrix methods, and operational methods. The present
report presents an iteration procedure for analysis of
flutter and similar characteristic-value problems.

For ordinary natural-vibration problems, iterative pro-
cedures of the Stodola type (references 1 and 2) are suitable
for finding the fundamental and higher-order natural modes
and frequencies. The higher-order solutions are obtained
through use of the orthogonality relations that exist among
the natural modes.

Orthogonality relations analogous to those that exist in
ordinary vibration problems can be found in the flutter
problem only by introduction of the so-called ‘‘adjoint”
problem. (This additional step is unnecessary in ordinary
vibration problems by virtue of the fact that they are
“self-adjoint.””) Wielandt has suggested an iterative trans-
formation procedure (reference 3) which is well-suited to
the flutter problem in that it avoids the need of orthogo-
nality relations and hence does not require consideration of
the adjoint problem. The iterative transformation pro-
cedure can also be applied to ordinary natural-vibration
problems with less labor than is generally required in the
extended Stodola procedure.

Because both the original and translated works of
Wielandt are difficult to follow, an explanation of the idea
of the iterative transformation procedure is given in the
present report and the application of the procedure to
ordinary natural-vibration problems and to flexure-torsion
flutter problems is shown in numerical examples. Com-
parisons of computed results with experimental values and
with results obtained by other methods of analysis are
also made.
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SYMBOLS

flexural stiffness

torsional stiffness

spanwise coordinate with origin at root of wing

complex representation of amplitudes and phases
of translation of elastic axis in harmonic motion

complex representation of amplitudes and phases
of rotation about elastic axis in harmonic motion

coupled mode (y,¢)

complex coefficients of ¥ which, when multiplied
by vy, give complex representation of amplitudes
and phases of aerodynamic and inertia forces
associated with translational component of
harmonic motion

complex coefficients of ¢ which, when multiplied
by ¢, give complex representation of amplitudes
and phases of aerodynamic and inertia forces
associated with rotational component of har-
monic motion

complex coefficients of y which, when multiplied
by v, give complex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with translational component of har-
monic motion

complex coefficients of ¢ which, when multiplied
by ¢, give complex representation of amplitudes
and phases of aerodynamic and inertia torques
associated with rotational component of har-
monic motion

structural-damping coefficients associated with
flexure and torsion, respectively (see appendix B)

coefficient of artificial damping (may be either
positive or negative)

reduced frequency (bw/v)

frequency of harmonic motion

. 1419,
characteristic value (%"—)

length of semichord of wing

length of cantilever wing from root to tip

mass ratio (y/mpb?)

velocity of air relative to wing -
distributed mass of wing per unit length of span
mass density of air

1 Supersedes NACA TN 2346, ‘“‘An Iterative Transformation Procedure for Numerical Solution of Flutter and Similar Characteristic-Value Problems’” by Myron L. Gossard, 1951.

1
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a distance between midchord axis and elastic axis
in terms of local semichord, positive when
elastic axis is behind midchord axis

U distance between elastic axisand gravity axis of dis-
tributed mass of wing in terms of local semichord,
positive when gravity axis is behind elastic axis

T radius of gyration of distributed mass of wing

about elastic axis in terms of local semichord
F.G transcendental functions of k (see reference 4)
t time

. Cn

Fon eigenvalue factor (0—"— 1)
R ratio of complex constants
A length; in numerical solutions, distance between

specific adjacent stations of wing
P applied force
q applied torque
1% shear
M bending moment
a curvature
B slope of elastic axis
T twisting moment
6 angle of twist
Subseripts:
1,23, . .. true modes or eigenvalues
a2,a3,a4, . . . transformed modes

intermediate derived mode

ABC, . .. stations
R real
I imaginary
0 reference value
b1,ba2,ba3, . . . sweeping functions
Superscripts:
1),2),3), ... cycles of iteration

A bar over a symbol indicates a concentrated quantity
instead of a distributed quantity.
A prime is used to denote division by «®

ITERATIVE TRANSFORMATION METHOD OF SOLUTION
GENERAL FEATURES OF METHOD

The principle of the iterative transformation procedure is
similar in form to that of the standard iteration procedure
for solving characteristic-value problems. Both procedures
require the determination of the solutions in the order of the
magnitudes of the eigenvalues, beginning with the funda-
mental. Both procedures require assumptions of modes,
integrations which generally must be done numerically, and
sweeping operations for higher-order-mode determinations.
The distinguishing features of the iterative transformation
procedure occur in the determination of solutions higher than
the fundamental and are as follows: (1) The immediate aim
is to determine not the true nth mode, as in the standard
iteration procedure, but a particular linear combination
composed of all modes from the fundamental to the nth.
This linear combination is referred to as the transformed nth

mode. The transformed nth mode can be made to have
nodal (zero) points at specified stations of the wing; such a
feature is highly desirable in numerical work. (2) The
sweeping operations, which consist of subtractions of lower-
order-mode shapes from the function obtained by integrating
the assumed mode, do not employ the orthogonality relations
as in the standard iteration method but make use of forcing
functions that, in numerical work, greatly simplify the
sweeping operations and increase the over-all accuracy of the
results by making the sweeping operations more consistent
with the rest of the process. (3) Although the true nth
eigenvalue is determined directly in the iterative transforma-
tion procedure, the true nth mode must be computed from
quantities within the iteration cycle after the transformed
nth mode is found.

OUTLINE OF STEPS IN THE PROCEDURE

The equation of equilibrium of a cantilever beam vibrating
harmonically in pure flexure is

d? d*
da BT =o'y 1)

or, after integration with proper attention to boundary

conditions,
z T 1 L L
o= [ a7 ) [ ey @

The solutions of this integral equation are the true natural
modes (eigenfunctions) ¥, ¥s, ¥s, - . . and the corresponding
natural frequencies (eigenvalues) w;, ws, ws, . ... For
convenience in subsequent discussion, the true modes are
assumed to be normalized to unity at some position (station
A) along the beam.

The first mode and frequency are assumed to have been
previously determined by the Stodola process. The iterative
transformation procedure becomes applicable in the deter-
mination of the second mode and frequency. As mentioned
previously, the immediate aim in the iteratiou for the second
mode is the determination of a linear combination of first
and second modes which is called the transformed second
mode. The linear combination %,—%, which has zero
ordinate at station A is chosen and defined as the transformed
second mode to be determined. The iteration for determina-
tion of this transformed second mode may be described as
follows:

(1) A plausibleshape y,,® for the transformed second mode
is assumed. This shape must have zero ordinate at station
A and should satisfy the boundary conditions as closely as
possible.

(2) The displacement

T O | L L
w7 [ [ [ v sy

resulting from the inertia load yw*y..® corresponding to the
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assumed shape ¥, vibrating harmonically at frequency w,
is calculated. This calculation must usually be done
numerically with the square of the frequency w,® being
carried along as an undetermined factor.

(8) A first-mode shape (previously determined) is sub-
tracted (swept out) from the calculated displacement ¥, in
an amount such that the resulting displacement is zero at

—.station A. Thus the resulting displacement is

@ — gy — ﬂ’)
Yar Yo (yl Ayl

(4) The resulting displacement y,,'? is compared with the
assumed displacement %,,. When the computations are
numerical, the ratios ¥, /y,? are compared at all the sta-
tions. If the assumed displacement is exactly equal to the
transformed second mode, the ratios are equal to each other.
These ratios contain the single unknown «,;, and the second
frequency is that value of w, which makes the ratios unity.

(5) If the ratios 4,?/y.,® from the first cycle of iteration
outlined in the four preceding steps are not reasonably the
same at all stations, the process must be repeated until the
ratios become reasonably the same. Each new cycle starts
with the resultant displacement of each preceding cycle.
The convergence of this process to the second frequency and
the transformed second mode is proved in appendix A.

The transformed third mode and the third frequency are
computed in the following manner. The transformed third
mode is defined as that combination of the first three natural
modes which has a zero ordinate at the same station that was
used in the transformed second mode (station A) and also a
zero ordinate at some other station, station B. Thus the
transformed third mode is defined as

e — M) _
Co T s B(yz Y1)

The iteration is as follows:

(1) A plausible shape y,3® for the transformed third mode
is assumed. This shape must have zero ordinates at sta-
tions A and B and should satisfy the boundary conditions as

closely as possible.
(2) The displacement

z fz ] L L
?/b=j; J; —ETL J; v ws?Yas P (d )t

is calculated with the square of the frequency ws® carried
along as an undetermined factor.

(3) The first of two sweeping operations, in which a first-
mode shape is swept from the displacement ¥, so as to make
the resulting displacement at station A zero, is performed.
This operation gives the displacement

_ ﬂ)
Yo Y1 Ayl

(4) The second sweeping operation, in which a transformed-
second-mode shape (previously determined) is swept from
the resulting displacement of step (3) so that the new
resulting displacement is zero at station B as well as at
station A, is performed. (This second sweeping operation
cannot disturb the zero condition at station A established in
step (3) because the second sweeping function (the trans-
formed second mode) is identically zero at station A.) Thus,
the final resulting displacement is

Yo
?Jb“(““) U
@ — gy _?/_b> _[ Y1/a :l
Yas Yo (’!]1 A’!/l ——’!/az B'!/az

(5) Comparisons of the ratios ¥, /. at all stations are
made, and, if they are not reasonably the same, additional
cycles of iteration are carried out until the ratios become
reasonably the same. The third frequency is then computed
from the ratios as explained previously. Convergence of
this process to the third frequency and the transformed third
mode is proved in appendix A.

Frequencies and transformed modes higher than the third
may be computed by extensions of the process just described.

PHYSICAL INTERPRETATION OF THE PROCEDURE

A physical interpretation of the iterative transformation
procedure can be given. With regard to the transformed
second mode, for example, the following question may be
asked: Under what conditions can the beam vibrate in the
transformed-second-mode shape at the second natural
frequency? Vibration in shape ynp=1y.—1y; at frequency w,
implies an inertia loading vw.?(y,—1%,). But if this load is
substituted in place of y¥w,% in the right-hand side of equation
(2), the result after integration will not be y,—y, but

wy? z [z L (L
yz‘w_ﬁy‘=ﬁ fo EI L f: vo(y:—y)da)t  (3)

However, if an external (forcing) load of an amount
v(wlt—w?®y, is added to the inertia load, the total load
¥(w*y:— Y1) will produce the shape y,—y,. Thus

j:j:E—ILL‘LLy(wfyz—wlzyl)(dz)“=y2—y1 (4)

The inertia and forcing loads are illustrated in figure 1.
The inertia load acting alone produces a displacement
(equation (3)) generally different from zero at station A.
The forcing load produces the displacement

<2_‘ 1) nyfE%ff v(w?—wdy(da)t  (5)

This displacement (equal to the sweeping function) has the
shape of the previously determined first mode and is equal
and opposite at station A to the displacement due to the
inertia load; that is, by virtue of the previously assigned
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normalizations at station A,

Thus the displacement due to the forcing load is completely
determined when the displacement due to the inertia load is
known. The gist of the foregoing analysis is that vibration
in the transformed-second-mode shape is the response of the
beam to an oscillatory forcing load of the first-mode shape
and of frequency equal to the second natural frequency,
superimposed on a free vibration of the beam in the second
natural mode.

Similar physical interpretations of the iterative transforma-
tion process for modes higher than the second can be made.

APPLICATION OF THE PROCEDURE IN ORDINARY COUPLED
NATURAL-VIBRATION PROBLEMS

The procedure that has been outlined in a preceding section
for pure flexure can easily be extended to systems capable of
simultaneous flexural and torsional displacements. Airplane
wings belong to the latter class of systems. The only
distinguishing element in coupled flexural-torsional vibration
problems is that each natural mode contains two components,
the flexure and the torsion. These components must always
appear together in a fixed relation to each other. The two
components must be computed together and must be used
together.

2 ;

et T T

(b)

______ ; ‘_L‘L\L\L\J\J\J

~a

S~
~
~

(c) ~
(a) Transformed second mode: ya2=y2—¥1.

(b) Inertia load: vw2(y2—41).
(¢) Forcing load: vy(w2—wi®)y1.

Fi1GURE 1,~—Illustration of physical basis of iteratjve transformation procedure,

Each coupled mode is a solution of the simultaneous
differential equations

d? L d
T Bl =iy +bug) (7)
d ;5 d

— QT = buy + brg) ®

Equations (7) and (8), after integration, become (for &
cantilever beam)

o= [ et bupany ®)

I | L
b ﬁ @L v (buy -+ b¢)(da)? (10)

The solution of the integral equations (9) and (10) for the
coupled transformed second mode by the iterative trans-
formation procedure is outlined diagrammastically in figure 2.
The flexural component of the displacement for a particular
step is illustrated in the left-hand side of the figure and the
torsional component is illustrated at the same level in the
right-hand side.

a— N
@)

%’ - ¢S>§\
®
G

y@

a

2% ¢<§22)§

a)
(a) Assumed transformed second mode.
(b) Intermediate derived mode.

(c) First-mode sweeping function.
(d) Derived transformed second mode.

Figure 2,—Illustration of steps in the iterative transformation procedure for determining
coupled modes.
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In the first step, an approximation to a linear combination
of the true first and second coupled modes is assumed. The
particular linear combination having zero flexural displace-
ment at the tip station (station A) is chosen. (For greatest
numerical accuracy, this nodal point should be chosen in the
component and at the station where the first coupled mode
has its maximum numerical value.) The symbols y,,® and
@a2® are used. to.designate the flexural and torsional com-
ponents of this assumed displacement, respectively. In
general, the magnitude of the torsional component relative to
the flexural component is difficult to estimate;the most exped-
ient thing to do is to take one of the components equal to zero.

The second step is the computation (by numerical inte-
gration) of the two components of the displacement due
to the inertia forces ywo?(Yos+due,;) and inertia torques
vw(Duyae+ b*r2¢,;) that are associated with the assumed
displacement. The result is termed the intermediate derived
mode, and the symbols ¥, and ¢, are used to designate
its two components.

The third step is the determination of a sweeping function
having the shape of the first coupled mode (previously de-
termined) and a magnitude such that the sum of the inter-
mediate derived mode and the sweeping function equals zero
in the flexural component at station A. In algebraic terms,
the first-mode sweeping function is given by

(1)
Yo ) n (11)

Y@=~

1
oo @ = —( 22 ) 1 (12)

The fourth step is the addition of the intermediate derived
mode and the first-mode sweeping function to give the derived
transformed second mode. Thus the two components of the
derived transformed second mode are

@2 gy (1) __ y_b(l) 13

Ya® =¥» "1 (13)
Y1 /a
[¢8]

¢a2(2)=¢b(1)—(yb > b1 (14)
Y1 /a

The calculation of the ratios 7,® [y and ¢un®/¢e® at
all stations completes the first cycle of iteration.

Additional cycles are carried out until the ratios at all
stations in both the flexural and torsional components have
values that are reasonably the same. The true second natural
frequency of the coupled system is then obtained as described
previously.

Steady vibration of an airplane wing at zero airspeed is an
example of coupled natural vibration. The actual numerical
calculations for the transformed second mode as well as for

the first mode and transformed third mode of an airplane
wing vibrating at zero airspeed are discussed subsequently as
a special case of flutter.

The more general equations of airplane flutter at nonzero
airspeed may be interpreted in such a way that they can
be solved by a process analogous to that just described for
coupled natural vibration.

APPLICATION OF THE ITERATIVE TRANSFORMATION
METHOD TO FLUTTER

FLUTTER EQUATIONS

The differential equations of equilibrium for a wing execut-
ing simple harmonic motion are

d? . d?
T3 EI(1+ig) T4=Py+P.o (15)
d .. d
— 5 O (1+-ig) T2=Qu+Quo (16)
These equations govern a motion represented by
Y(z,)=y(@)e'* 7
®(z, )= ()6’ (18)

The use of the structural-damping coefficients g, and g4 in
equations (15) and (16) is discussed in appendix B. The ex-
pressions P,y-+Ps¢ and Qu+@Qs¢ are the intensities of
applied force and torque, respectively. For aerodynamic
and inertia forces and torques due to air flow and distributed
mass, the P and @ coefficients have values given by the follow-
ing formulas (rearranged from those in reference 4):

For P,

PyEPRy_?:PIy (19)
in which
(b (26 v
Pa(z,) (F+1+0) (D) 0
and
b\ 2F’
Po=(5,) % (1) 1)
For Py,
Pd,EP)N,—iPN, (22)
in which

2G 2F a-}—uu]()bow"’ @23)

Pe=(5) [
S i COE I (GRS

and




For @y,
Q= Qr,—iQn (25)

in which

(B [ 0) -] @) a0

and
([T e
And for @,
Qo= Qro—1Q1s (28)
in which
(TG G 20w
(29)
and

(i) [G-)iGro) F-(-)FICse

For inertia forces and torques due to concentrated mass, the
intensities of force and torque are, respectively,

Py+Pyg=lim DT s2 (31)
dz—0 z
and _
QY+ Qsé=lim @y%w (32)
dz—0 x
in which
o AY RS (Z 2
RECC RE T
= v 2
P=0=(5) (s i) (D 0
and

OO IR

For a cantilever wing the boundary conditions on the
displacements are

Wero=@eno=(FL)_ | BTO+ig) ]

[ Ly
_I:%EI(I +1g,) dwz:LL

=|:GJ(1+ig¢)Z—::L=L=O (36)

The differential equations (15) and (16) are now written
with the eigenvalue «® as an explicit factor. Thus equations
(15) and (16) become

d‘£2 EI(I—}-’L{],,) d—z‘—WZ(Pu ?/+P¢ ) (37
and

d .
~ L eI tig) B=v@iy+ese 69
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in which the P’ and @’ coefficients are equal, respectively, to
the P and @ coefficients divided by

FORMULATION OF PSEUDOFLUTTER PROBLEM

Those solutions 2, (y,¢) of equations (37) and (38) for
which «? is a real and positive (not complex) quantity
represent the steady harmonic motions of true flutter.
However, because the P and @ coefficients are in general
complex and because of the presence of structural damping,
the solutions of equations (37) and (38) will, in general,
be complex and will include complex eigenvalues «®. As
in other methods of flutter analysis, the problem is made
tractable by assuming at the beginning a value of the param-

eter k=%- This assumption fixes the values of the P and @

coefficients. A real value of k is assumed because v must
be real and only real values of » can represent flutter. To
avoid the inconsistence of assumed real values of % and
obtained complex values of «® in the solutions, the problem

itself is altered by introducing an artificial damping so that
2
the complex eigenvalue is given by ﬁwi—gﬂ where ¢, is the

coefficient of artificial damping. Thus the differential
equations of what may be termed the pseudoflutter problem
become

2
P L E1atig) T~ “’%g (P/y+Py'9) (39)

~——GJ(1 +%g¢)dz Qv+ Qs P (40)

1-!-7,g

The value of »? can now be real for any assumed real value
of k& and is therefore the square of the frequency of the steady
harmonic motion maintained by the artificial-damping
forces and the naturally present aerodynamic, inertia,
structural, and structural-damping forces. True flutter
is possible for those special cases in which g, is zero.

Equations (39) and (40) are similar in form to equations
(7) and (8) and can be solved by the iterative transformation
procedure in a way completely analogous to the solution
of the ordinary problem. The complications introduced
by the presence of air forces require, however, that a set of
solutions be obtained for each of several assumed values of k.
The fact that most of the functions involved are complex
virtually quadruples the labor as compared with that
required in the ordinary coupled natural-vibration problem.

STEPS IN THE ITERATION AS APPLIED TO FLUTTER

The iteration procedure employs the basic differential
equations (39) and (40) in their integral forms which, for the
cantilever wing under consideration, are

v=4 0 [ erarm ). J. ®utPioan @y

1(* 1 L , ,
¢:6ﬁ @mﬁ (Q/y+ Qs d) (dx)* (42)
i i ; 141g,
in which C stands for the more convenient form . of the

eigenvalue. The iteration of equations (41) and (42)
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follows the same form as the iteration of equations (9) and
(10). Briefly, the steps are as follows:

(1) A real value of & is assumed and the values of the
complex P and @ coeflicients are computed.

(2) An assumption is made for the desired mode y,é.
(In the first cycle of iteration the assumed mode may be
real but in the following cycles it will be complex.)

-(3) The -complex loadings P,y-Ps¢ and Q,y+ Q.0 are
computed.

(4) The integrations indicated in the equations are
carried out numerically to get the complex intermediate
derived mode.

(5) The sweeping operations are performed by using the
complex lower-order transformed modes previously deter-
mined. For convenience in numerical calculations, the
flexural and torsional components of the complex derived
(swept) transformed mode are computed in the forms

1y, L*
0w BT, “

and
1~y L* E I bg?

O e BT, G,0, L7 Ko (44)

respectively, in which K, and K, are nondimensional com-
plex functions of the spanwise coordinate z.

(6) The derived and assumed modes are compared by
computing their ratios at the stations of the wing. If these
ratios are not reasonably the same, additional cycles of
iteration are carried out until the ratios are reasonably
the same. In the limit (never obtained in practice) the
ratios will be identical and the proper value of C is that value
which makes them unity; that is,

1 ')’0 «L4 1 Yo L EOIOQL
O Ho EQIO b Ky 6’ ‘[.I.—[) EoIo GoJ() L2 K¢
’ - =1  (45)

in which y and ¢ constitute the assumed mode of the limiting
cycle and the functions in the numerators constitute the
derived mode of the limiting cycle.

Equation (45) may be stated in the form
_1 vo L*
0(D+ iH) = o Euly =1 (46)

in which D and H are nondimensional real numbers. Inas-

much as C is defined as 144 g", equation (46) may be written
It 141g.
(D+im Lo =110 @7)

from which the frequency and artificial-damping coefficient
are obtained as follows:

EoIo ﬁg
1/ L 7
w== D (48)
H
ga=ﬁ (49)

217403—53—2

The relative air velocity corresponding to the assumed value
of k is given through the definition of %, that is,

bw

NUMERICAL EXAMPLES

Numerical computations presented in this section illustrate
the actual application of the iterative transformation pro-
cedure first to the ordinary natural-vibration problem
(vibration at zero airspeed) and then to the flutter problem.
All examples deal with the cantilever wing shown in figure 3.

The geometric, structural, and mass properties of the
wing are given in figure 3. A station coordinate system is
employed for the purposes of the required numerical inte-
grations. Four stations along the span have been selected
as indicated in the figure; one of these stations is located at
the spanwise position of the concentrated mass. The dis-
tributions of forces and displacements over the span are
considered to be adequately defined (through interpolation)
by the forces and displacements at the four selected stations.
The selection of a system of stations in any problem is im-
portant because it greatly influences the amount and accu-
racy of the work to follow. In problems, such as the present
one, that involve concentrated masses, a station must be
placed at each concentrated mass because displacements at
the concentrated masses must be known. (More generally,
a station must be placed at each discontinuity. Discontinu-
ities may be present in the distribution of the structural
stiffness and in the plan form as well as in distribution of
mass.) The other stations should be equally spaced between
the discontinuities, and for the system of parabolic inter-
polation used in the numerical integrations in this report
there must be a minimum of one station between each
adjacent pair of discontinuities. The total number of
stations should be the smallest possible that is consistent
with the desired accuracy because the calculation effort
increases rapidly with an increasing number of stations. In
coupled systems, the number of degrees of freedom allowed
is twice the number of stations selected; that is the number
of degrees of freedom in either the flexural or torsional

lv
-Elastic axis
’ Gr“avn‘y axis

0.0989 slug._ 0.0270 slugffi< / / Midchord axis
B . . ~ ’I l/ ,l
(A3 T T 77
! .039%b
b 578 i o
| ———— e Sl —— e e e e
!
b=0.333 f# /26b
!
— Ay g J Ag=/292 Ft —>
A= 0.5482g
t L=4 ft
Elu
=0.002378 slug/ft? Ry 123000 (radians/sec)?
»=32.6
ET=977.11b412 2 EI
GJ=480.6 1b-ft2 (;‘, =0.1353

F1GURE 3,—Properties of cantilever wing used in numerijcal examples.
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component of displacement is equal to the number of stations
employed. Experience has indicated that with parabolic
approximations results accurate to at least two significant
figures in the highest mode computed can be obtained by
employing numbers of stations as follows: For uncoupled
systems, the number of stations should be two greater than
the order of the highest mode to be computed; for coupled
systems, the number of stations should be one greater than
the order of the highest mode to be computed, with a mini-
mum of three stations. More than these minimum numbers
of stations may be required if their use is dictated by suffi-
ciently many discontinuities.

ORDINARY COUPLED NATURAL MODES AND FREQUENCIES

The calculations for the first, second, and third modes at
zero airspeed for the wing of figure 3 are shown in tables 1,
2, and 3, respectively. In this case k= = and the only
aerodynamic forces are the apparent-mass forces. For
simplicity, structural damping is disregarded; therefore, all
quantities entering the problem are real. The numerical
values of the aerodynamic-inertia force coefficients for
k= =, as well as for other values of £ to be used subsequently,
are given in table 4.

The first coupled mode is computed in table 1. Table 1
shows in separate tabulations the flexural and torsional parts
of the calculation. The first cycle of iteration (part (a) of
the table) is shown in full detail. Two forms for the tor-
sional part of the calculations are shown: The first form
may be used when the torsional stiffness GJ is constant over
each bay or over the whole length of the wing; the second
form, which requires slightly more work, must be used
when G.J is variable and may be used, as in this case, when
GJ is constant. The second and third cycles of iteration
are summarized in parts (b) and (c) of table 1.

Details of the first cycle of iteration, if the procedure that
applies only for constant torsional stiffness GJ for the tor-
sional part of the calculation is used, are as follows: In
columns 1 of table 1 (a) the two parts 1,V and ¢,V of the
assumed first mode are listed. The torsional component is
assumed to be zero because it will ultimately be small and is
difficult to estimate. Columns 2 and 3 are the appropriate
products of the assumed mode and the distributed-force
coefficients. Columns 4, which are the sums of columns 2
and 3, give the two components of the external load which
correspond to the assumed mode and thearbitrary frequencyw.
Columns 5 give the concentrated loads (external forces and
torques) that are equivalent to the distributed loads of
columns 4. These equivalent concentrations are given in
columns 5 in terms of the pertinent distances between sta-
tions A; and in columns 6 in terms of the reference distance
. Formulas used for computing the equivalent concen-
trations from the distributed loads are given in appendix C.
Columns 7 and 8 are the appropriate products of the assumed
mode and the concentrated-force coefficients. Columns 9
are the total concentrated loads, the sums of columns 6, 7,
and 8.

The flexural and torsional calculations must now be de-
scribed separately. In column 10 for flexure, the average
shears in the bays between stations are found by a successive
summation of the concentrated loads from the tip where
the shear is zero inboard to the root. In column 11 the incre-
ments of bending moment are computed by multiplying
the shears by the bay lengths in terms of A,. The bending
moments of column 12 are found by a successive summation
of the increments of bending moment from the tip where the
bending moment is zero inboard to the root. Column 13
gives the distribution of curvature, which is obtained by
dividing each ordinate of the bending-moment curve by the
local value of EY (£I in this example is constant). Equiva-
lent concentrated curvatures are now obtained by applying
to the distributed curvatures the previously used formulas
for equivalent concentrations. Column 14 gives these
equivalent concentrations in terms of the distances \;, and
column 15 gives them in terms of the reference distance .
The average slopes in the bays are obtained in column 16
by a successive summation of the concentrated curvatures
from the root where the slope is zero outboard to the tip.
The increments of derived flexural displacement are com-
puted in column 17 by multiplying the average slopes by the
bay lengths in terms of A,. The flexural component ,‘® of
the derived mode is obtained in column 18 by a successive
summation of the increments of displacement from the root
where the displacement is zero outboard to the tip. Column
19 gives the ratios at the selected stations of the derived
flexural component to the assumed flexural component.

Columns 10 to 15 for torsion are now considered. Column
10 gives the average twisting moments in the bays of the
wing and is obtained by a successive summation of the
concentrated torques of column 9 from the tip where the
twisting moment is zero inboard to the root. The average
twists in the bays are computed in column 11 by dividing
the average twisting moment in each bay by the local value
of GJ (GJ in this example is constant over the whole span).
The increments of derived torsional displacement are obtained
in column 12 by multiplying the average twists by the bay
lengths in terms of A,. The torsional component of the
derived mode is computed in column 13 by a successive
summation of the increments of displacement from the root
where the displacement is zero outboard to the tip. Inas-
much as the derived displacement of column 13 is in terms
of GJ, the displacement is converted into terms of KI in
column 14 so that it may be compared with the assumed
torsional displacement on the same basis as the assumed
and derived flexural displacements are compared and so that
the next cycle may be started with displacement components
having the same dimensions as the assumed mode of this
first cycle. Column 15 normally would contain the ratios
at the selected stations of the derived torsional component
to the assumed torsional component, but in the case of table
1 (a) these ratios are meaningless because the torsional
component will ultimately be different than was assumed
in column 1.
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Before the results of further cycles of iteration for the first
mode are described, the form that the numerical integration
for the torsional component must take when GJ is variable
is described. In the part of table 1 (a) showing the calcula-
tion for variable G.J, columns 1 to 4 are the same as in the
calculation for constant GJ. The form of the numerical
integration changes at column 5. Column 5 consists of
.increments of twisting moment over the bays. These incre-
ments are obtained as increments of area beneath the curve
of distributed torque (column 4). Formulas used for com-
puting these increments are given in appendix C. In column
5 the increments of twisting moment are given in terms
of the distances A\, and in column 6 they are given in terms
of the reference distance A,. The twisting moments at the
selected stations due to the distributed torsional loading are
obtained in column 7 by a successive summation of the incre-
ments of twisting moment. The components of external
concentrated torque are as for constant GJ and are given in
columns 8 and 9. The applied concentrated torque gives
twisting moments as shown in column 10. Column 11 is
the sum of columns 7 and 10 and gives the total twisting
moments at the selected stations. (Note that in columns 10
and 11 there is a discontinuity in twisting moment at the
station having the mass discontinuity.) Column 12 gives
the distribution of twist found by dividing column 11 by
the local value of GJ (GJ being in general not constant).
The increments of derived torsional displacement are com-
puted in columns 13 and 14 by applying to the values of
column 12 the same formulas applied previously to column
4. The torsional component of the derived mode (columns
15 and 16) is, except for small computational discrepancies,
the same as in the previous method, as it should be.

Two additional cycles of iteration were found to be ade-
quate for the determination of the first mode and frequency.
The results of these iterations are shown in parts (b) and (c)
of table 1. In table 1 (b), for example, columns 1 give the
two components of the assumed mode of the second cycle,
which are obtained by normalizing the derived mode of the
first cycle to unity in the flexural component at the tip
station. This normalization is not essential but facilitates
manipulations and comparisons by keeping the numerical
values in all cycles within the same range of magnitude.
Columns 2 give the derived mode obtained by the numerical
integration procedure just described. The ratios of derived
to assumed mode are given in columns 3 for both components
of displacement. These ratios are seen to be fairly uniform.
The ratios obtained in the third cycle in table 1(c) are, for
practical purposes, identical. The averaging device shown
in columns 4 of table 1 (¢) and below table 1 is adopted
as a quick and generally quite accurate way of smoothing
out small discrepancies that remain in the ratios after
convergence is almost complete. This device, although
clearly not necessary in the case of table 1 (c), is useful in
other cases throughout the numerical examples and is ex-
plained as follows: The two ratios in columns 4 are obtained
by considering the flexural and torsional components of the

displacement separately and then dividing the sum of the
station values of the derived displacement by the sum of the
station values of the assumed displacement. When a dis-
crepancy remains between two ratios of the type in columns
4, the average of these two is taken as the final value;
the final value for this case is given in the calculation
below table 1. This device gives greater weight to the larger
ordinates and is in that respect similar to other weighting
procedures such as the energy and least-squares methods
but is much simpler. If fhe assumed and derived displace-
ments contain both positive and negative ordinates, the
negative ordinates should be changed to positive for the
purpose of the summations. The remaining calculation
shown below table 1 gives that value of the arbitrary fre-
quency « which makes the ratio just computed unity. As
proved in appendix A, this value of w is the fundamental
frequency w;.

Table 2 gives the main results of three cycles of iteration
required to obtain satisfactory approximations of the second
frequency and the transformed second mode at zero airspeed
(k= ). Columns 1 of the first cycle (parts (a) of table 2)
contain the two components ¥, and ¢.® of the assumed
transformed second mode. This mode must have one zero
ordinate (excluding the root ordinates). Although this
zero ordinate may theoretically be taken at any station, the
numerical accuracy of the results is greatest if the zero ordi-
nate is placed at the station and in the component where the
preceding mode (the first) has its maximum numerical value
(since the numerical process is such that the larger ordinates
contain more significant figures than the smaller ordinates).
Therefore, the zero ordinate of the transformed second mode
is placed at the tip station in the flexural component, this
location being designated station A. In the numerical
values of columns 1, the flexural component ¥, would
normally be taken as zero. (The values that are shown are
estimated from flutter calculations that had previously been
made for this wing.) Columns 2 give the intermediate
derived mode obtained by numerical integration. Columns
3 constitute the first-mode sweeping function. The shape
of this sweeping function is given by columns 2 of table 1 (c)
and its magnitude is such as to be equal and opposite to the
intermediate derived mode at station A. Thus the derived
transformed second mode (columns 4), which is the sum of
columns 2 and 3, has zero ordinate in the flexural component
at station A and a shape comparable to the assumed mode, as
indicated by the ratios in columns 5. The ratios in the next
two cycles (parts (b) and (¢) of table 2) show marked im-
provement in uniformity. The final value of the ratio com-
puted below the table gives, as proved in appendix A, the
value of the second frequency w,, as shown.

The main results of the iterations to obtain satisfactory
approximations of the third frequency and the transformed
third mode at zero airspeed are stated in table 3. Typical
operations required in a cycle are outlined in table 3 (a).
Columns 1 give the assumed transformed third mode made
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up of the two components y,;® and ¢;®. The transformed
third mode is to have a zero ordinate in the flexural compo-
nent at the tip station as in the transformed second mode and
a zero ordinate in the torsional component at the tip station.
The location of the second zero ordinate is designated station
B. To obtain greatest numerical accuracy, the selection of
the second zero ordinate is governed by the same rule that
was used for selecting the first zero ordinate, namely, that
the new zero ordinate should be placed at the station and
in the component where the preceding mode (the transformed
second) has its maximum numerical value. The numerical
values that are shown in columns 1 are estimated from pre-
vious flutter calculations; the torsional component ¢.;®
would normally be taken as zero. Columns 2 give the inter-
mediate derived mode, and columns 3 give the first-mode
sweeping function which, as before, has a magnitude at sta-
tion A that is equal and opposite to the intermediate derived
mode. Columns 4 constitute the transformed-second-mode
sweeping function which bas a shape given by columns 4 of
table 2 (¢) and a magnitude at station B equal and opposite
to the sum of the intermediate derived mode and the first-
mode sweeping function (the sum of columns 2 and 3). The
derived transformed third mode of the first cycle is the sum
of columns 2, 3, and 4 and is given in columns 5. The ratios
in columns 6 are far from uniform. The ratios in the second
and third cycles (parts (b) and (c) of table 3) show improve-
ments in uniformity. The iteration is discontinued at the
end of the third cycle where the ratios are about as uniform
as they can get with the limited number of significant figures
that are present. The frequency obtained by the smoothing
device is the third frequency w; and has the value shown.

The patterns laid out in the foregoing examples establish
the general technique that can be used to obtain zero-
airspeed modes and frequencies higher than the third.
Guiding rules for determining the number of selected stations
to be employed have been given previously. These examples
also set the basic pattern for the computation of the modes
and eigenvalues of psuedoflutter and of flutter.

MODES AND EIGENVALUES OF PSEUDOFLUTTER AND OF FLUTTER

The operational solution in reference 5 gave for the wing
under consideration (fig. 3) a reduced frequency at flutter
of 0.1443. In order to use this operational solution, this
same value (k=0.1443) is used in the flutter calculations
that follow.

The calculations for the first, second, and third modes at
k=0.1443 are shown in tables 5, 6, and 7, respectively.
Aerodynamic-inertia force coefficients have been computed
by equations (19) to (35) and their values are given in
table 4. Structural damping is disregarded, although a note
on the method of incorporating structural damping in the
calculations is made subsequently.

Table 5 (a) shows in detail the first cycle of iteration for
the first mode. The form of the computations is the same
as that shown previously for the determination of zero-
airspeed modes. The amount of computation, however, is
between three and four times that required for zero-airspeed
modes because of the fact that the functions involved are
complex and thus must be described by two parts—a
real part and an imaginary part. Columns 1 and 2 are the
real and imaginary parts, respectively, of the assumed first
mode. As a start, all parts of the assumed mode except the
real part of the flexural component are taken as zero. Col-
umns 3 to 6 are the real parts of the products of aerodynamic-
inertia coefficients and the assumed mode, and thus their
sums (columns 7) are the real parts of the distributed load.
If the expressions for the distributed load are considered,
this condition is more evident. The distributed forces pro-
ducing flexure are given by

(PRy—iPIu)(yR‘l‘iyl)+(PR¢_?:PI¢)(¢R+’L'¢I)=PMZ/R+
PR¢¢'R+P1yy1+PIqs¢1+i(PRny+PR¢¢I—PIny—PI¢¢R)
(51)

The terms of the real part of equation (51) appear in columns
3 to 6 in the flexural part of table 5 (a); the terms of the
imaginary part of equation (51) appear in columns 22 to 25
in the flexural part of table 5 (a). This separation of real
and imaginary parts allows the displacement due to each part
to be computed separately. A similar explanation can be
made for the quantities in columns 3 to 6 and columns 18 to
21 in the torsional part of table 5 (a).

Real and imaginary parts of the concentrated loads that
are equivalent to the distributed loads are computed as
explained previously by the formulas of appendix C. These
values are shown in columns 8, 9, 27, and 28 in the flexural
part and in columns 8, 9, 23, and 24 in the torsional part.
The real and imaginary parts of the loads due to the con-
centrated mass follow next in order, and the total concen-
trated loads are given in columns 12 and 31 in the flexural
part and in columns 12 and 27 in the torsional part. The
averags shears, average twisting moments, and bending
moments are then computed as described previously.

The remaining parts of the computations in table 5 (a)
that are associated with the real parts of the load are de-
scribed as follows (the remaining parts that are associated
with the imaginary parts of the load are similar): Column
16 in the flexural part gives the distributed curvature due
to the real part of the load. This curvature is obtained by
dividing the ordinates of the real part of the bending-moment
curve by the local values of the complex flexural stiffness
EI(1+1g,)(1+1%g,). In these examples, any actual struc-
tural damping is disregarded; therefore g, is zero. The
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factor 1-+}4g,, containing the as yet unknown artificial-
damping coefficient, combines with «® to give the factor 1/C
in column 16, C being the arbitrary eigenvalue 1+, _tj;g e,
If the actual structural damping g, is regarded as other than
zero, the values in column 16 would be computed as follows:
The real and imaginary parts of the bending moment would
be combined- into- the complex bending moment My-+iM;.
This complex bending-moment distribution would then
be divided by the local values of the complex stiffness to give
EI(IA—ng_*_,,)%(Z:‘lI—I}—ig,,Y The factor 14-ig, would be carried
along in the arbitrary eigenvalue C, and the numerical values
EMT_—?I—E:?;;) would be placed
in column 16. The imaginary part of the quotient would
be similarly placed (in column 35) in the calculations asso-
ciated with the imaginary part of the load. The average
twists due to the real part of the load are computed in
column 14 in the torsional part of table 5 (a), and those
due to the imaginary part of the load must also be computed.
These calculations follow the same pattern as those just
explained for the curvatures. The complex torsional stiff-
ness GJ(141igs)(1+1ig,) enters in place of the complex
flexural stiffness. If GJ or g4 is variable over a bay length
or over the whole span, the numerical integration for the
torsional part of the calculations should be carried out as
explained in the part of table 1 (a) that deals with variable G.J.

The numerical integrations are completed in the manner
already described, and the derived mode is thereby obtained
in the form of four components of displacement. The
flexural components are ¥,z® and y;;® of columns 21 and 40
in the flexural part. The torsional components are ¢,z® and
¢11? of columns 17 and 32 in the torsional part. However,
these components are not actually the real and imaginary
parts of the flexural and torsional components of the derived
mode, because each one of them contains the complex factor
1+41g,. Nevertheless, the complex derived mode is given
by ¥1z? +iyu? and ¢12? +i¢?.

The complex ratios of the complex derived mode to the
complex assumed mode are computed in column 41 in the
flexural part and column 33 in the torsional part. Only
two of these ratios have actually been computed but they
are sufficient to indicate the need for further cycles of
iteration.

A total of four cyecles of iteration (the main results of the
last three are shown in parts (b), (¢), and (d) of table 5)
was required for satisfactory convergence. In columns 6 of
table 5 (d) and immediately below table 5, the smoothing
device described previously is applied to obtain the best
single value of the ratios. The fundamental (first) eigen-
value is that value of ¢ which makes the ratio unity. Thus

of the real part of the quotient

1 +zg.u

=(269.5—82.21) ; and since () is defined as

EI

the frequency and artificial damping of the first mode are
obtained from the real and imaginary parts of the equation

-1—'*‘;";-‘7“1 (269.5—82.29) 2 "” (52)
1

The calculation of these quantities and the corrlesponding
airspeed », which is obtained from the relation vl=§% are

shown at the bottom of table 5.

Tables 6 and 7 show the main results of the iterations to
obtain the transformed second and third modes for £=0.1443.
Four cycles of iteration for each mode gave satisfactory
convergence. The assumed modes of columns 1 and 2 of
tables 6 (a) and 7 (a) were taken in the forms recommended
previously in connection with tables 2 and 3. In tables 6
and 7, the complex intermediate derived modes are given
by %™ +iyer™ and ¢pr'™ +i¢p,™, the complex first-mode
sweeping functions, by ¥uz™ + /™ and épe™ +idp ™
with shapes corresponding to columns 3 and 4 of table
5 (d), and the complex transformed-second-mode sweeping
functions, by ¥aee™ +ser™ and  Guer™ +idper™ with
shapes corresponding to columns 7 and 8 of table 6 (d). The
results computed in and below table 7 give for the third
eigenvalue ¢,;=0.030 and w;==168.9 radians per second.
The corresponding airspeed is #;=390 feet per second.

COMPUTATION OF TRUE MODES

Because the critical flutter velocities are given directly by
the eigenvalues, knowledge of the true modes in flutter
problems is of no value (at least of no value recognized at
present). The same statement applies to the transformed
pseudoflutter modes, with the exception that in the iterative
method their determination is a necessary adjunct to the
determination of the eigenvalues. In ordinary problems of
forced vibration (at zero airspeed), however, the true modes
are often used with great advantage. For this reason and
for the sake of completeness of the presentation of the itera-
tive transformation procedure, the method of determining
true modes from results of the iterative transformation
procedure is illustrated in tables 8 and 9.

The computations in tables 8 and 9 pertain to the same
wing analyzed in the previous examples. The modes com-
puted are for £=0.1443. The true third mode as computed
in table 9 may therefore be compared with the flutter
mode computed for this wing by the operational method in
reference 5.

In table 8, the true second mode is computed as follows
from functions appearing in the last cycle of iteration for the
transformed second mode (table 6(d)): Preceding the table
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proper is the calculation of the eigenvalue factor F, 12=%-—- 1
2
that is needed for computing the true second mode. In the

terminology of tables 6(d) and 8 and as shown in appendix A,
the true-second-mode shape is given by

y21e+’i?/21=(’.l/m+’iyu)‘|'(’.l/azzz(5) + i Ya2r®) (53)
and
dort+1bor=P1r+ 1010+ (Pu2r® L Pa2r®) (54)
in which
@ 1 so @
Yot iy =Lt L (55)
| A
and
@ Ll @
¢m+i¢u=9—°—”"%m (56)

Columns 1 of table 8 show the key ordinate (451 +%p1:*)4 of
the first-mode sweeping function y1z® +si:?, ¢o12® +1idp®
as given in columns 5 and 6 of table 6(d). The key
ordinate is taken as the largest ordinate (the ordinate at
station A) for the reason of accuracy cited previously. The
key ordinate of the first-mode shape y1z+%1r, $1+1¢1r (equal
to the first terms on the right-hand sides of equations (53)
and (54)) 1s shown as the boxed value in column 2 and is
obtained by dividing the value in column 1 by the eigenvalue
factor Fi,. The other values in columns 2 are obtained by
using the key ordinate in conjunction with the first-mode
shape given in columns 3 and 4 of table 5(d). Columns 3
show the transformed-second-mode shape ¥ur® +Yeer®,
ba2r® +1eer® (equal to the second terms on the right-
hand sides of equations (53) and (54)) given by columns
7 and 8 of table 6(d). The sum of columns 2 and 3 which
is given in columns 4 gives the shape of the true second
mode Yort+ar, dort+ida (equal to the left-hand sides of
equations (563) and (54)).

In table 9, the computation of the true third mode pro-

ceeds as follows: The necessary eigenvalue factors F' 13=%— 1
3

and F; 23=g-2 —1 are computed as shown. In the terminology
3

of tables 7(d) and 9 and as shown in appendix A, the true-
third-mode shape is given by
Yar T+ 7:1/31: (1/113+ 7«.?/111) -+ (y121z+ 7:?/121) -+ (ya2R+ @'Z/agz) -+
(’!/a:m @+ ’b.?/asfm) 6] 7)
and
dapt+103r=(b1rt1¢1r) +{P12r T 1D12r) T (Pazr T T bozr) +
(dasr ® U pasr (5)> (58)

in which
‘g‘y;— 1) (yllR‘l_iyllI) +<%— 1) (y12R+7:y1?1)

=Z/buz(4) +iym“” (5 9)

%—— 1) (pur+idur) +<%:— 1) (Pr2rt 2 121)

= ¢p1e® + 1 dp1r? (60)
) y “@
Yarr+ PYa2r= Yourm L VYtarr Oj_ Y buar (61)
Foit
@ 2 @
¢am+ 7:¢a21= L;am 0—"——‘—:*_ “Poazt (6 2)

o, 1

and Y+ Wier, Purtidnr 1S 10 Yer+Wer, ParTiPar as
e+, d1r+ 101718 10 Ya2e® +1We2r®, ba2r® +ider™® in table
8. The key ordinates (¥uz® +pr™® ) and (poaar' +idpa2r @)z
of the first and second sweeping functions appear in columns 1
and 2 and are taken from columns 5, 6, 7, and 8 of table
7(d). The key ordinate of the functions Fu(Yiettar),
Fou(pr2r-+1¢127), which are cqual to the second terms on the
left-hand sides of equations (59) and (60), is computed in
columns 3 by using the key ordinate of columns 2 in con-
junction with ordinates at stations A and B in columns 2
and 3 of table 8 as follows:

[Fos(YrrT Y120 4] tavies

— (Y1irt1Y1a
<¢a2R ® + 'L ¢a21 @ )B

The key ordinate of the functions Fis(y11z+1W111), Fra(b1ir+1b110),
which are equal to the first terms on the left-hand sides
of equations (59) and (60), is given in columns 4 and,
in accordance with equations (59) and (60), is the difference
between Yug® +iyor®, onz® +idn,? of columns 1 and
Fzs(ylw‘i‘?:ylzl)y Fos(prort1012r) of columns 3. The key ordi-
nates of the first-mode shapes yuz+iyvir, ¢urtidur and
YVisr~+ Wiar, G122+ 1012 are shown in columns 6 and 5 and are
obtained by dividing the values in columns 3 and 4 by the
appropriate cigenvalue factors. The sum of the key ordi-
nates of columns 5 and 6, shown as the boxed value in col-
umn 7, is the key ordinate of the total-first-mode shape
Y1+, P1r+1¢r which is equal to the sums of the first two
terms on the right-hand sides of equations (57) and (58). The
other valuesin columns 7 are obtained by using the key ordi-
nate in conjunction with the first-mode shape givenin columns
3and 4 of table 5(d). The key ordinate of the transformed-
second-mode shape Yer~War, ®wortigwr, Which is equal

:It - [Fos(daretThazn)s tavies  (63)
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to the third terms on the right-hand sides of equations
(57) and (58), is shown as the boxed value in columns 8 and is
obtained by dividing the value in columns 2 by the eigen-
value factor Fy. The other values in columns 8 are com-
puted by using the key ordinate in conjunction with the
transformed-second-mode shape given in columns 7 and 8 of
table 6(d). Columns 9 show the transformed-third-mode
shape %use® +iear®, ¢ur® +idwr® (equal to the fourth
terms on the right-hand sides of equations (57) and (58))
given by columns 9 and 10 of table 7(d). The sum of col-
umns 7, 8, and 9 given in columns 10 gives the shape of
the true third mode ys;x+iysr, ¢srtigsr (equal to the left-
hand sides of equations (57) and (58)).

TRENDS AND COMPARISONS OF NUMERICAL RESULTS

Results of the computations shown in the preceding
section of the report together with results of similar compu-
tations based on other assumed values of k are given in
figures 4 to 6. Figures 4 and 5 deal with the wing to which
the concentrated mass is attached. Figure 6 gives data of a
similar nature for the same wing without the concentrated
mass. The computed results obtained by the Rayleigh-
Ritz and operational methods and the experimental results,
all of which are given for this wing in references 5 and 6, are
also recorded in figures 4 to 6.

In part (a) of figure 4 the solid curves show the variation
of the artificial-damping coefficient g, with airspeed in each
of the first three solutions. For each assumed value of k a
dashed curve is drawn through points that represent solutions
for that value of k. Part (b) of figure 4 shows in a similar
way the variation of the frequency » with airspeed and the
lines of constant values of k. The facts of particular interest
that are shown by these plots arc as follows:

(1) The true flutter condition is given by the third solution
for a value of k& between 0.1443 and 0.1590 at an airspeed
almost equal to that found in the experiment. Here the
computed value of g, is zero. The computed frequency at
true flutter is also in very close agreement with the experi-
mental value.

(2) The operational solution is in good agreement with the
experimental solution, but the solutions obtained by the
Rayleigh-Ritz method with three and four modes vary by
72 percent and 22 percent, respectively, from the solution
obtained by the operational method. The operational solu-
tion is theoretically the most exact even though it involves
summations of finite numbers of terms of infinite series.
However, as pointed out in reference 5, its use is limited in
practice to wings of uniform section. In the present example
the results obtained by the iterative method would be
expected to be better than the results obtained by the

Rayleigh-Ritz method because the eight degrees of freedom
used in the iterative method are much less restrictive than
the three or four used in the Rayleigh-Ritz method.
Although exact agreement of the results of any of the com-
putational methods with the experimental results is not to
be expected, the better agreement of the iterative solution
as compared with the operational solution is at first sur-
prising;: On further observation, however, this agreement
must be credited to a fortunate disposition of the errors
involved in the -iterative method because, in the case of
figure 6, the relative order of agreement of the operational
and iterative results with the experimental result is opposite
to that in figure 4.

(3) The trends of the solid curves representing the first
and second solutions in figures 4 (a) indicate that both may
cross the zero artificial-damping axis at very large airspeeds.

Experiment (reference 5)
Oper-atiornal solution (reference 5)
Rayleigh-Rifz: 3 modes (reference 6)
Rayleigh-Ritz: 4 modes (reference 6)
/teratior: 4 stations

o 4a40b O g
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(b) Variation of frequency with airspeed.

FIGURE 4.—Variation of artificial damping and frequency with airspeed in first three solutions.
‘Wing with concentrated mass,




14

REPORT 1073—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS -

1.8 T
Iferation, k=0./1443
- ————~————=—/st mode
_— —2d mode
/6 ——————3d mocle
' /teration, k=0./590
—— ————=—3d mode
Operational solution, k=0./443
==———== Flutter mode
1.4
1.2
1.0
h
W«
£
8
&
4
2
0
200
160
8‘ 120
Ay
3
S s0
M)
g
Q
40 ~
\
\\\
—
— -~
___________ ——
o— e o [ oy
//
— ,/
(=) P— == _/'/
05 4 3 2
Station

(a) Translation y.

1.8
/
/ /
//
// /
16
- / 7
v
1.4 / / =
X 7 /
/
ry
1.2 // /
rod
/ !
g/.O 4 //
3 //
° !
<8 7///
'/ _—
7 —
¢ /4 ~
. //
V4V
/
wa
4 YA/
WAV
7
/
2
//
i
l/
of===== =TT T T T T T T T T
200
/60 e —
o 120
3
v .
g
§ &0
b
8
Q.
40
0
O ety w R
4% P 3 /
Stotion

(b) Rotation ¢.

FIGURE 5 —Amplitudes and phases of modes, Wing with concentrated mass,



AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS 15

But this conjecture is of no practical interest so long as a
curve (the third solution) that crosses at a lower airspeed
exists. However, the question of whether the curve for
some solution higher than the third could cross the zero
artificial-damping axis at an airspeed lower than that at
which the third solution crosses demands an answer.

(4) Reasonable assurance that, among all possible solu-
tions, the curve-of -third-solutions in fizure 4 (a) crosses the
zero artificial-damping axis at a lower airspeed than any
other is provided by the trends of the curves for constant
values of k in parts (a) and (b) of figure 4. The curves of k
show that the curve representing the fourth solution will
most assuredly lie above and to the right of the solid curves

-
<=
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o e j;d solutions™~
}kw;// /ﬂﬂ' \\\\
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(a) Variation of artificial damping with airspeed.
{b) Variation of frequency with airspeed,

FIGURE 6.—Variation of artificial damping and frequency in first three solutions. Wing
without concentrated mass.
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in figure 4 (b) and probably below and to the right of the
solid curve for the third solution in figure 4 (a). The curves

of k in figure 4 (b) are straight lines by definition (k=%>'

Prediction of the courses of the curves of k in figure 4 (a)
cannot be made with much certainty. They have a strong
tendency to proceed to the right, but it is easy to believe that
upward or downward changes in their directions could take
place. The curve for the fourth solution, however, would
probably cross the zero damping axis at a value of » between
500 and 600 feet per second in figure 4 (a).

Figure 5 shows and compares the amplitude and phase
distributions of modes computed by the iterative transfor-
mation procedure and by the operational method for the
wing with a concentrated mass. The first and second modes
as well as the more important third mode from the iterative
solution for £=0.1443 are plotted, and the third mode from
the iterative solution for £=0.1590 is also plotted. The
third modes from the iterative solutions for the two values
of k agree very well in shape with the flutter mode obtained
in reference 5 by the operational method, and the operational
mode lies between the two iterative modes. Thus the
agreement of the iterative and the operational methods is
again evidenced.

Figure 6 is a plot similar to figure 4 but relates to the
behavior of the wing analyzed in figure 4 if the concentrated
mass is not present. There is very little similarity in the
data of the two figures. The most notable difference is that
in figure 6 the true flutter mode appears in the second solution
instead of the third as before and that the flutter speed is
lower than before. Of interest is the occurrence of almost
equal eigenvalues in the second and third solutions for
k£=0.50. The flutter speeds given in figure 6 by all methods
of solution, including the Rayleigh-Ritz method, are seen to
be in substantial agreement.

CONCLUDING REMARKS

The report has described the iterative transformation
method suggested by H. Wielandt and has demonstrated
the use of the method in an orderly computation of critical
flutter speeds. Numerical comparisons with solutions ob-
tained by other methods and with experimental values have
been made. The applications made in this report show
promise for future practical use of the method.

LANGLEY AERONAUTICAL LABORATORY,
Narionan Apvisory COMMITTEE FOR AERONAUTICS,
LaxcereyY Fievp, Va., January 17, 1951.



APPENDIX A
ON THE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE

INTRODUCTION

The extensive existing literature on the eigenvalue prob-
lems is concerned almost exclusively with the class known as
self-adjoint problems, in which the eigenfunctions and eigen-
values are real. In recent years, non-self-adjoint eigenvalue
problems have received increasing attention. This class
includes the flutter problem in which the eigenfunctions and
eigenvalues are generally complex. The literature referred
to by Wielandt in reference 3 reveals that the non-self-adjoint
eigenvalue problem and the transformation method for its
solution have been given some attention since at least 1928.
Wielandt’s own work constitutes probably the most extensive
contribution on the subject.

The discussion on convergence given herein is not con-
tained in Wielandt’s work and may be considered a rigorous
proof if the following assumption is valid: that the equations
(equations (41) and (42)) for the system (the wing) under
consideration have an infinite number of solutions that form
a complete set for any value of the reduced frequency k.
In the subsequent demonstrations, the validity of expanding
arbitrary displacement functions in infinite series of eigen-
functions depends upon the validity of the assumption.
That complete sets of eigenfunctions do exist seems plausible
enough to justify reliance in the conclusions.

BASIC RELATIONS

For any one of the true solutions of the eigenvalue problem,
for example, the eigenvalue O, and eigenfunction ¥m,ém,
equations (41) and (42) may be written as

Covn= [ [ grrir ). [ ®vmt Py @y

and

z 1 L ! 4 2
Om¢m=ﬁ G—J(mﬁ (Q/Ynt Qs dn)dx)? (A2)

To make the notation more concise, let the coupled mode
Ym,dm be represented by w,. Then if y,,¢, is substituted
into the right-hand sides of equations (A1) and (A2), the
left-hand sides may be represented by Crw,. Furthermore,
because of the linear character of the equations of the prob-
lem, substitution of the function series

gaiwi (A3)

into the right-hand sides of equations (A1) and (A2) gives
16

for the left-hand sides the function series

201(1«1’601' (A4)
=

The coefficients @, are, in general, complex. The complex
eigenvalues C; are assumed in the subsequent proofs, except
where stated otherwise, to be different from each other, and
the eigenvalue having the largest modulus is defined as O,
the second largest, as (%, and so forth, so that

|GI>CI >G> ...

Expressions (A3) and (A4) are the expansions, in terms of
the eigenfunctions and the eigenvalues, of the functions.
previously referred to as the assumed and intermediate de-
rived modes, respectively. The subsequent proofs of con-
vergence are based upon the fundamental relationship that
exists between expressions (A3) and (A4).

(A5)

FUNDAMENTAL MODE

The fundamental mode and eigenvalue are found by itera-
tion according to the original Stodola procedure. In the
present terminology and notation, this procedure and its
proof of convergence are as follows: The coupled mode as-
sumed at the beginning of the first cycle of iteration in general
contains some component of each of the eigenfunctions;
therefore its most general expression is

Wy M IZ a;w; (Aﬁ)
=1

The intermediate derived mode (which in this case is also the
final derived mode inasmuch as no sweeping operation is
required to obtain the first mode) is for this first cycle of

iteration
wy D =w, ? ZZ 0w, (A7)

=

The second and following cycles are begun with the final

derived mode of each preceding cycle, and thus the assumed
and derived modes of the nth cycles are

w, ™ =§m: C.* law,; (A8)
=1
w, TN =i C."aw; (A9)
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In accordance with the definitions given in equation (A5),
all terms on the right-hand sides of equations (A8) and (A9)
except the first are negligibly small in comparison with the
first for large valuesof n. In the limit the fundamental mode
is obtained as

lim w,®*9 =lim C;"a,w, (A10)
n—>»c0 n—o )
and the fundamental eigenvalue is obtained from
. W, (41
}11—{1}» w e (All)

TRANSFORMED SECOND MODE

The initial assumption of the transformed second mode
in general is of the form

wa2‘1’=ﬁ bs [wi—(%> wx:l
=2 Wi1/4

in which the arbitrary coefficients ; are in general complex
and the subscript A refers to values of either the flexural or
torsional components of the eigenfunctions at station A.
More specifically, if, for example, the nodal (zero) point of
wa2 1s selected to be at station A in the flexural component,
then the subscript 4 refers only to the flexural components
of wi, wy, ws, . . . and not to their torsional components.
Thus each term of the series in equation (A12) satisfies the
requirement that either the flexural or torsional component
of the assumed mode be zero at station A.

To simplify the subsequent work as much as possible, the
eigenfunctions are henceforth assumed to be normalized to
unity at station A; thus

(A12)

(’wi)A:l (7:21,2,3, e ) (A13)
Equation (A12) now takes the simpler form
wag(l)zi) bi(wi'—wl) (A14)
i=2

The assumed mode given by equation (Al4) leads, ac-
cording to equations (A3) and (A4), to the following inter-
mediate derived mode:

wb(l)zi b-,:(Oiwi'—‘O]wl) (A15)
i=2
Sweeping of this intermediate derived mode with the first-
mode shape (previously determined) leads to the derived
transformed second mode of the first cycle as follows:

[0§) had
wa2‘2)=w,,“’—<wb > wy=2_ C1by(w;—wy) (A16)
W Ja i=2

When each succeeding cycle is begun with the derived
transformed second mode of its preceding cycle, the various
functions for the nth cycle are

'w.,g‘”’ =;iz Oi”_lbi('wi—'wl) (A17)
wﬁ”’:i Oin_lbi(0¢w1—01w1) (A].S) .

=
W™D =32 Ob i —wy) (A19)

=2

The limits as n approaches infinity are
lim W, @+ =hEm Cynby(w,—w;) (A20)
and
(41

lim %2 __—0, (A21)

n—w waQ (n)

Equations (A20) and (A21) show that convergence to the
exact-transformed-second-mode shape w,—w; and to the
exact second eigenvalue C, can be obtained theoretically.

TRUE SECOND MODE

The key to computation of the true second mode is readily
found in the simple case illustrated in figure 1. In this case
the sweeping function of the final cycle of iteration would be
the displacement produced by the forcing load v (ws?—w®)y1,
in which ¥, is the first-mode component of the transformed
second mode y,.. The sweeping function is designated by
yp; which has a well-defined numerical value in the iteration.
Thus the value of ¥, could be found from the equation

2
Y= 'y(w27 wl)yl ( 1)?/1 (A22)
that is,
_ Ym
V1= o2 (A23)
s—1
wy

The sum of y,, given in the iteration and y; given by equation
(A23) gives ¥», the true second mode; that is,

(A24)

Yot 1=V~ Y1t V1=V

By analogy, the true-second-mode shape in the general
(complex) problem under consideration is found as follows:
The limiting value of the sweeping function is, from equation
(A18),

— (n)
Z’)Z >Aw1:1im 02" (%— 1) b2w1 (A25)

N>

lim w,® =lim

n—o N—srx
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The expression analogous to equation (A23) is

lim Wp1 (=)
EZT”_ﬂifi Co"byw, (A26)
o
The expression analogous to equation (A24) is
lim w,, ™
lim w,_,g("“’—}-""—”———:lim Co"byw, (A27)
NR—ro 1 n—w
!

which gives the exact shape of the true second mode.
TRANSFORMED THIRD MODE

The first cycle of iteration for the transformed third mode
begins with an assumed mode that has two zero values, one
of these being in the same (flexural or torsional) component
and at the same station (station A) as previously employed
for the transformed second mode. The other zero value
may be taken in the same component as was the first zero
value and at a different station (station B), or it may be
taken in the other component at any station, including
station A. Either of these possible selections for the loca-
tion of the second zero value is indicated in the following
equations by use of the subscript B. The initially assumed
transformed third mode may be written as

) (wa— wl)] (A28)

was(”=§d1[w1—w1— Py
in which the arbitrary coefficients d; are complex. Each
term of the series in equation (A28) is zero at station A by
reason of the normalizations stated in equation (A13), and
each term is also zero at station B.

The various displacement functions for the general (nth)
cycle of iteration may be expressed as follows: The assumed

mode is

’w::3(n)=§: Ci"~d; [’wi—uh— wl) (wy— ’wl):l (A29)

i=3 Wy — W

The intermediate derived mode is

’wb(”)zi Oin—ldi Ci’wi-—Cl'wl—— wl wl) (02w2 01'w1):|
i=
(A30)
The result after sweeping the intermediate derived mode

with a first-mode shape such as to make the sum zero at
station A is as follows:

(n) @

w

w,,m_( 22 =3 Ond,| Culwy—wy)—
Wi /a i=3

Ce ]

A1)

Sweeping of the mode given by equation (A31) with a
transformed-second-mode shape such as to make the sum zero
in the flexural or torsional component (as the case may be) at
station B gives the derived transformed third mode as follows:

(n)
wy™ —(L2—) w
w (n) b w 1
=2 ) w, 1 74 (we—wy)
- 27— W
A B

wy Wa— W,
Z:,; ”d,r'wi w,— (w, w'\) (w,— 'wl)—,

The limits as n approaches infinity are

waa(n'l‘l) =wb (n) —_—

(A32)

limn wag(n-l—l):lim Osnda [w3_wl—

n—o N>

) (wy— wl)_l (A383)

Wy —

and

(n+1)
. w,
lim L(,L)—=C/Y3
n—o  Wes

(A34)

nd (A34), convergence to the ex-
(Ws—Wr\ . 3
'wx} \wz wy)

and to the exact third eigenvalu C; can be obtained theoreti-

As shown by equations (A33)a

~ ad ad )
SLUT'ILILEL “ULlLlU. oae LA PO w;;“‘(U]"—\
Wo—

TRUE THIRD MODE

Computation of the true third mode is explained by refer-
ring again to the simple problem of pure flexural vibration
in which air forces are excluded. The transformed third
mode in this simple problem would be given by

Ya3=Y3— Y1~ y3 )(yz Y1) (A35)

The total load required to hold the beam in equilibrium in the

shape ¥, is
ys—yx) ] ey (ys—zh) A36
Yo—Y1/B Yim e Ya—Y1 By2 ( )

If the beam is vibrating with shape y,; at frequency ws, the
inertia load is given by

Yo Ys—yw® [1 —

YwstYas="7 w3 [’ya_yl— Yo )('y '!/1)] (A37)

The forcing load required is the difference between the total
load (expression (A36)) and the inertia load (equation (A37)),

that is,
ys—yl) ] 2 (ys—yl)
2__ 1 —( < + — 43N
V(s wIZ)[ Y2—Y1/8 Yt (es— o) Y2— Y1 Jzay2
(A38)

The displacement produced by this forcing load is

wy? )[ (2/3‘?/1) :] ws® )
——1 1—{ &= ——1
<w12 Y2—Y1/5 it wo®

Ys—Ys A39
Ys y1)3y2 ( )
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and this displacement must be equal to the sum of the
sweeping functions in the last cycle of iteration (if the
iteration has been carried to complete convergence). The
first sweeping function is of the first-mode shape and the
second sweeping function is of the transformed-second-mode
shape. If the expression (A39) is written in the form

Gl = ) (G= R

ws? ) ya—yl>
Qs 1 y(2—% —
(w22 Ya—U1 B(y2 v1)
each of the sweeping functions contained in the displacement
produced by the forcing load is obvious. Thus

SR CEINRCRICE
=({—=—1 R =1 ) {
Yo <w12 Yo—Y1/B yit ws? Yo—U1 Byl

(A41)
and
ym2=<—— 1)( yl) (Ya—y1)

in which ¥, and y... designate the first and second sweeping
functions, respectively. Both of these functions have well-
defined numerical values in the iteration.

If now a simpler notation is adopted, equations (A41) and
(A42) can be written as

(A40)

(A42)

2 2
ym=(§%~— 1)1/11"‘(2—:2— 1)?/12 (A43)
and
w32
ybu2=<'_2_ 1) Ya2 (A44)
wa
in which
Ys— U1
= 1 (L2
Yu [ yz—y1>3:| 4 (A45)
Yi2= yz ) U1 (A46)
and
va=(L=L) (i) (A47)

The true third mode is clearly given by the sum of equations
(A35), (A45), (A46), and (A47); thus

Ys=Yaz T+ Y11+ Y12t Yoz (A48)

The transformed third mode y,; is given directly in the
iteration. The procedure for finding the other components
on the right-hand side of equation (A48) is as follows:
Component Y43, by equation (A44), is

Yo
ya2=;’32—“5 (A49)
L5 71
w2

Component ¥, is known when ¥,, is known because its rela-
tion to y., was established previously in connection with the
transformed-second-mode calculations (see equation (A24)).
Component 7,; is then found by equation (A43) as

(A50)

By analogy with the foregoing case, the true third mode in
the complex-eigenvalue problem is found as follows: The
limiting value of the second sweeping function is (see equa-
tions (A31) and (A32))

Wy — w”(n)) wy
. . w
Iim wy, ™ =—lm 1 74 (wy—wy)
Wo B

n—w n—rw — Wy

—lim Oy (%— 1>d3 s
3

Nn—ow

1) @i—w)  (A51)

The limiting value of the first sweeping function is (see
equations (A30) and (A31))

(n)
lim wy ™= —lim (%2 ) wy
n—o oo w; Ja
— 1 n Ol 01 02 ) ]
=lim C5*ds | 5,—1—\g, 70, Wi

(A52)

The quantities analogous to ;; and ¥, of equations (A43)
and (A44) are, for the present case, Him w;;™ and lim w,,™.

n—m n—ro
The latter quantity is obtained from the relation analogous
to equation (A49) as follows:

lim wege ™ (

lim w,, ™ =""% =lim C;"d,

n—r _?_ 1 n—w

W3— Wy _
’U)z""w1>}3 (we—wy) (A53)
3

The relationship of lim w;,™ and lim w,,™ is obtained from

n—r o n—o

equations (A26) and (A20) of the section dealing with the

transformed second mode. Thus,
lim Wyt (=)
lim Wiz " —lHm [(’waz( ))B] Eq. (A53) n—o
n—so n—o [('w (n+1))B] Eq. (A20) g_l__ 1
2 Ey. (A426)

(A54)

:—_lim 03nd3 (w3 » >
n—o — W

The quantity analogous to y;; of equation (A43) is, for the
present case, lim w; and is obtained by an equation

=
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analogous to equation (A50) as follows:

Jim 1w, ™ — %—1 Tim ,,™
hm wll(n) =7L—>eo 3 n—m
n—rwo _CL_ 1
C,
—lim O,*d [1— E’ﬂ) ]w A55
Jm (5% Wo—w1 /s 1 ( )

The exact shape of the true third mode w; is given by the
sum of equations (A33), (A53), (A55), and (A54), which is

Lm (w0 g™ Fwy ™ +w,™)=lim Cs"d;w; (A56)

n—o n—®

FOURTH AND HIGHER MODES

Extensions of the proofs to modes higher than the third
can be made in & manner similar to the foregoing proofs. By
this means, the iterative transformation procedure can be
proved, under the assumptions stated at the beginning of this
appendix, to be convergent for all modes and eigenvalues.

CASES OF EIGENVALUES HAVING EQUAL OR NEARLY EQUAL MODULI

For a representative case, suppose that

|CLI>]Csl; [Cs| >0y > . . . (A57)
and that
|021=[03| (A58)
or that
|C,| =~ |Cs (A59)

Under conditions (A57) and either (A58) or (A59), the
assumed and derived modes after a few cycles of iteration
will be virtually as follows (see equations (A17) and (A19)):

(A60)
(A6 1y

Waz ™ = Cy™ by (wy—w1) + C5™ ~by (w3 —wy)
’ll)az(n+1) = 02”b2 (’w2‘— w,) + O;;nba (’w;;“"wl)

If |C,| is only slightly greater than |C], the second terms on
the right-hand sides of equations (A60) and (A61) become
negligibly small very slowly as n» increases, even though
they do become negligibly small as n approaches infinity.
If |C,| and {Cs] are equal, these terms never become negligi-
bly small. Thus, the problem of circumventing this slow
convergence or apparent lack of convergence arises.

A satisfactory method for coping with these conditions is
to combine linearly the results of the last two cycles of the
series of iteration cycles that have been performed. For best
results in an actual problem, not less than the third and
fourth cycles should be used for this purpose in order to
reduce as much as practicable the effects of all higher-order
components.

The following formulas for combining the results of the
last two cycles are based on the assumption that the assumed

and derived modes in each of the cycles contain only com-
ponents of the types in equations (A60) and (A61).

The two components (with shapes w,—w;, and w;—w;)
clearly appear in the last cycle in proportions different than
in the preceding cycle. (The proportion in each cycle is a
complex function of the spanwise coordinate.) Because of
this differing proportionality the results of cycles n—1 and »
can be linearly combined so that the combined functions
contain only one of the components w,—w; and w;—w;.
Accordingly, the ratios of both the flexural and torsional
components of the combined functions at all stations should
be equal to each other. In algebraic terms, this statement
means that

(A62)

(Twaz(n) +wa2(n+1)> _R
S

TWaa ™ ™Y 105, ™

in which » and R are (complex) constants, and the subscript
S designates that the ratio may be evaluated at any station
S, that is, that R has the same value for all stations. All w
functions must be the same type of component, either flex-
ural or torsional.

Since S can be any station, the equality

' (rwa2<"> +wa2<ﬂ+”> _ (rwazm’ +wa2<"+1>>
1 2

TWas ™~V 1wy ™ PWaa ™~V Fwee ™

(A63)

exists, in which stations 1 and 2 must be different or may
be the same, depending on whether the w functions on the
left-hand side are the same or different types of components
than those on the right-hand side. The two values of r
that satisfy equation (A63) are

(=1, (D) EFSVREESIING ™, D
rz_%‘élmi\/ gA(n—l).(n)) ~j(n—1).(n) (A64)
in which
A1, (Waz 1), (Waa'" V), (A65)
(Wae™), (Wa™)s
A0+ (0™ (022 ) (A66)
B (e *FY), (Waz ™+,
At _ (e ), (W2 71), (A67)
B (Wap ™ FV), (WY,
The corresponding values of B are
A @D, (4D AG-D. eFDN2Z 4@, a+D
R= 2A =D, iJ SAm-D.m ) T L&D,
=wA(n).(n+l;/A(n—l)‘(n) (A68)
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These values of B are equal to C; and C;, and the corre-
sponding values of », when placed in the expression

 rwa™ g D (A69)

give modes of the shapes w,—w, and w;—w,. When |C] is
nearly equal to (|, the appropriate set of B and r to give the
lower transformed mode w,—w; is evident. When [C;| and
|Cs] are equal, the mode obtained by equation (A69) with
either value of r may be used as the transformed second
mode, but the trends of the eigenvalues that have been or will
be determined at other values of the reduced frequency k
may be used as a guide in making the selection that fits the
trend.

In actual computations, one further cycle of iteration be-
ginning with an assumed mode given by expression (A69)
should be carried out to assess the extent to which the func-
tions We:™ ™V, we'™, and we"tY are free of all except the
two components of the types appearing in equations (A60)
and (A61). If the ratios of this cycle are not reasonably
constant, the unwanted components still present have to be
removed by carrying out another cycle of iteration and
again applying equations (A64) and (A68).

The method just described is clearly applicable in the
general cases |C,|=|Crsi| or |C,] =|Crti].

Eigenvalues having equal moduli include the special case
of identical eigenvalues. As a basis for discussion let it be
assumed that

[011>102|2103|>104|> LR (A70)
and that
Co=0;=0Cy (A71D)

The significance of the occurrence of these two identical
eigenvalues is that the wing system may oscillate with the
same frequency and artificial damping in any of an infinite
number of modes, any two of which are linearly independent
of each other and of the first, fourth, and higher modes.
This infinite number of possible modes (all corresponding to
Ce) are the infinitely many linear combinations of two
basic linearly independent modes that are necessary and

sufficient in combination with the first, fourth, and higher
modes to describe an arbitrary displacement of the wing
system. Clearly, only two linearly independent modes cor-
responding to the double eigenvalue Cp; are required for
analytical purposes. These two are designated w; and w; as
before but with the reservation that w. and w; must be
derivable as two differing linear combinations of a single
basic pair of linearly independent modes that also correspond
to 023. -
Equations (A20) and (A21) are replaced in the present case
by
lim wag("’+l) = lim 023”’ [bz(’")g""wl)‘l'ba(w;:,‘—‘wl)] (A72)

n—rco n—r
and
(4D
Equation (A27) is replaced by
im Wy ()
lim Wao (n+1) +n—_.5'1—= lim 023”(62'602 + baw;;) (A74)
023

The transformed second mode (equation (A72)) is in this
case a linear combination of the first three eigenfunctions,
and the so-called true second mode is actually a linear
combination of the second and third eigenfunctions.

If the iterative transformation procedure is now applied
in the regular way to determine the transformed third mode,
the third eigenvalue, and the true third mode, the results
will be as follows: The transformed third mode will be, like
the transformed second mode, a linear combination of the
first three eigenfunctions but will be linearly independent
of the transformed second mode. The so-called true third
mode will be, like the so-called true second mode, a linear
combination of the second and third eigenfunctions and will
be linearly independent of the so-called true second mode.
The results will also include a second determination of the
double eigenvalue (h;. It may therefore be concluded that
the iterative transformation procedure is valid and sufficient
in all cases of eigenvalue multiplicity.



APPENDIX B

THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The familiar concept of a complex force K(1-4ig)s in
simple (one-degree-of-freedom) vibrating systems having
structural damping may be easily extended to continuous
vibrating systems such as beams and airplane wings. The
quantity K is the elastic-spring constant, s is the displace-
ment, Ks is the elastic-spring force, and Kygs is the structural-
damping force.

For a beam in flexure, the stiffness of the fibers is given by
the modulus of elasticity £, which is analogous to the quantity
K for the spring. The elastic stress at any point of the cross
section is given by eF where ¢ is the strain which is analogous
to the displacement s. Then the complex stress at any

point of the cross section of a beam with structural damping
is Ed-+ig)e. The complex bending moment corresponding
to this stress, obtained in the usual way by integration of

2,
the moment of the stresses over the section, is EI(1+1g) ﬁé

This result leads to the concept of a complex stiffness
EI(141g,) for beams in flexural vibration with structural
damping. Similarly, the complex stiffness of beams in tor-
sional vibration with structural damping is GJ(141igy).
The subscripts ¥ and ¢ indicate that the structural-damping
coefficient ¢ may have a different value for torsional vibra-
tions than it has for flexural vibrations. Both g, and gs may
be functions of the spanwise position z.

APPENDIX C

FORMULAS FOR EQUIVALENT CONCENTRATIONS AND INCREMENTS OF TORQUE

The formulas used in the numerical examples for com-
puting equivalent concentrated loads and curvatures are
those that have been derived in references 7 and 8. For the
concentration at an end station the formula is

— A

P1=ﬂ (7Tp1+6p2—p3) (C1)
At an intermediate station

- A

P2=T‘2“ (P:1+10p,-+p5) (C2)

The significance of the quantities used in formulas (C1) and
(C2) is shown in sketch 1.

- == Distributed—lood curve
r\

P, By

aop it

o ——

7
Sketch 1,

These formulas are based on the assumption that the
distributed-load (or curvature) curve is a series of second-
degree parabolic arcs. When applied to distributed flexural
loads, the formulas give concentrations which produce the
same bending moments in the wing at all the selected stations
as the distributed load. The formulas may be correctly applied
to distributed torsional loads only if G/ is constant over each
bay. In this case the formulas give concentrations which

produce the same torsional displacement at all the selected
stations as the distributed load. For a station placed at a
discontinuity in ordinate or slope, formula (C1) must be
applied to both the left and the right of the station and the
results added.

The formulas for obtaining increments of area beneath a
curve of distributed torques are derived in reference 8.
These formulas are based as before on approximating second-
degree parabolas. They are given here in & slightly different
form which is better adapted to present uses. Thus

A=% (@ H4+ a9+ (@ —a) (©3)

A= (g Hagot 09— (0 ) (©4)

where the significance of 4, and A4, and of ¢, ¢, and ¢ is
shown by sketch 2.

_ - Distributed-foad

Increments of -~ _
h curve

tforque Y -« -

Sketch 2.

The ordinate at a discontinuity should not be used as the
middle one of the three ordinates selected for use in formulas
(C3) and (C4). The formulas are valid only where the three
ordinates are connected by a continuous curve.
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TABLE 1.—ITERATION TO OBTAIN FIRST COUPLED MODE

[Common factors for each column are

/)
) °
/
5 4 3 2 1
Station
Flexure: (a) First cycle
1 2 ’ 3 ' 4 5 6 7 8 9 10 11 12 13
m P P, ) P 7. P D Vv AM M
Station o vy 4 p p P Py Pyo jZ a
by , Aby Noby Atby by
b — w? w? — ? — = w?
w “ © “ Ely
1 1. 000 33. 6 0 33. 6 14. 30 14. 30 14. 30 0 0
14. 30 14, 30
2 . 568 19. 10 0 19. 10 19. 26 19. 26 19. 26 14. 30 14. 30
33. 56 33. 56
3 L1904 | 6.52| 0 6. 52 { 5 { 527 11795 | o |2451 47.86 | 47.86
58. 07 31. 82
4 . 054 1. 82 0 1. 82 2. 06 1. 13 1. 13 79. 68 79. 68
59. 20 32. 45
5 0 0 0 0 112. 13 112. 13
Torsion (with GJ constant over each bay): (a) First cycle
1 2 ‘ 3 l 4 5 6 ‘ 7 ’ 8 ! 9 ‘ 10 11
) - - — — - T 0
Station ét Quy Qo ( g q q Quy Q49 q
bz_’y 2 Aibly 9 Nob2y Nob2y ,
; ' P 2 — w? Gin w
1 0 1. 397 0 1. 397 0. 594 0. 594 0. 59
0. 59 0. 59
2 0 . 794 0 . 794 . 800 . 800 . 80
1. 39 1. 39
. 219 . 219
3 0 L2171 0 . 271 -2 { 219 | —1aes —14.41
: —13. 02 —13. 02
4 0 . 076 0 . 076 . 086 . 047 .05
—12. 97 —12. 97
5 0 0 0 0

(B B ase M i
+ —282E1#w.

ZAZy® T T ®
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FOR k=« FOR WING WITH CONCENTRATED MASS

given under the culumn headings ]

25

7] I Py {
7 N
7
5 4 3 2 1
Station
(a) First cycle—Continued (b) Second cycle (e¢) Third cycle
14 15 16 17 i8 19 1 2 3 1 2 3 4
_ - yl(2) 1@ ylﬂ) Eyl(l)
« a B Ay N "o n® n® 9® n® n® "o Ty ®
ANy, Ay, Mfby Ny o, Niby | Mr o, Miby My o,
Bl ¢ El. “ Bl © Bl b Eln | EILY b V2l El:®
280. 27 280. 27 1. 000 281. 65 281. 65 1. 000 281. 90 | 281. 90
120. 90 | 120. 90
15. 90 15. 90 159. 37 280 . 569 160. 24 282 . 570 160. 36 | 282
105. 00 | 105. 00
17. 53 17. 53
{29' 20 16. 01 54, 37 280 . 194 54. 73 282 . 194 54.75 | 282 282
71. 46 39. 15
79.75 | 43.70 15, 22 282 . 054 15. 33 284 . 055 15.33 | 279
27.76 15. 22
50. 60 | 27.76 0 0 0 0 0
(a) First eycle—Continued (b) Second cycle (e) Third cycle
12 13 14 15 1 2 3 T 1 2 3 4
1@ n® a1 L@
Ad 1 @ ¢l(2) ¢—1(T) @1 @ b1 ® —m é1 @ b1 ® E@*) ﬂ@
APy, Aty o, Aty o, Ny,
GJu © Bl El ET.”
—12.28 | —1. 662 . ~—0. 00594 —1. 780 300 —0. 00633 — 1. 786 282
0. 59
—12.87 | —1.742 R —. 00622 — 1. 861 299 —. 00662 — 1. 866 282
1. 39
—14.26 | —1. 930 —— - —. 00689 —2. 048 297 —. 00729 —2. 056 282 282
—7.15 —7.11 —. 963 U —. 00344 —~1. 022 297 —. 00364 —1. 026 282
—7.11 0 0 0 0 0 0
Elu
S 199 000
W= %g—‘—: 4—223é0—-2—99=38.7 radians per second



TABLE 1.—ITERATION TO OBTAIN FIRST COUPLED MODE FOR k=« FOR WING WITH CONCENTRATED MASS—Concluded
Torsion (with GJ variable): (a) First cycle

1 2 3 4 5 6 ( 7 \ 8 9 10 ; 11 12 13 14 15 16 17
== |
W Q ) AT AT T 0 0s T T 0 Ad Ad PN @ e
Station @1 wY P q WY @ 1 o1 5
by, Aby hobPy Aby Adob?y My My
P w PRl GIn ¥ | 7GJu © Glu © EI.®
1 0 1. 397 0 1. 397 0 0 0 0 —12,25 | —1. 660 e
1. 089 1. 089 0. 60 0. 60
2 0 . 794 0 . 794 1. 089 0 1. 09 1. 09 —12.85 | —1.741 .-
525 . 525 6 1. 40 1. 40
0 1. 61 1. 61
3 0 . 271 0 .271 1.614 | —14.68| 0 {_14_ 68 {_13. o {_13. o —14.25 | —1.929 | ____
. 164 . 090 —13.02 | —7.15
4 0 . 076 0 . 076 1. 704 —14.68 | —12.98 | —12. 98 —7.10 —. 962 ———-
. 028 015 —12,.96 | —7.10
5 0 0 0 0 1. 719 —14. 68 | —12,96 | —12. 96 0 0

92

SOILOAVNOYEV ¥O0d AALLINWOD AHOSIAAV TVNOILVN—ELOT LH0ddY



TABLE 2.—ITERATION TO OBTAIN TRANSFORMED SECOND MODE FOR k=« FOR WING WITH CONCENTRATED MASS

[Common factors for each column are given under the column headings]

2 i o | |
v '
5 4 3 2 1 ‘;
Station ]
Flexure: (a) First eycle (b) Second cycle (¢) Third cycle
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6
m m 0 10y yﬂz(” i o o 1) ya2(3) 2y m {2\ ey ya2(‘) zy"z“)
Station YoV yp¥ ypn'd Yar'? yag(l) Ya2¥ yu'? Y Ya2¥ ;Ja;(z) Ya2'¥ Yp'¥ Yp1'¥ Yar¥ yag(a) Ey 2(3)
Notby o Mty o, Agtby W Ay, A'by o? Ny o
b Eln Bl “ b Fln Elu b Eln Elu“
1(A) 0 —174.1 | 174. 1 0 0 —411.0 | 411.0 0 0 —465. 8 | 465. 8 0
2 —.281 |—-107.7 99, 2 —8. 5 30. 2 —.692 |—252.5|234.2 ) —18.3 | 26.4 —.820 | —285.4 | 265.4 | —20.0 | 24. 4
3 —.252 | —43.1 33. 8 —9.3 36. 9 —. 757 | —99.7 80.0 | —19.7 26. 0 —.882 | —112.0 90.6 | —21.4 | 24.2 24. 3
4 ~.094 | —-13.1 948 —3.6 38. 3 —.293 | —30.2 22. 4 -7.8 26. 6 —. 349 —33. 8 25. 4 —8.4 1241
5 0 0 0 0 0 0 0 0 0 0 0 0
Torsion: (a) First cyele (b) Second cycle (¢) Third cycle
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6
¢a2(z) bar® ) 4 Pt (0]
Station Paz'? &0 dn? a2 oD a2 ® ' oun? Ha2® ¢a:(2) Pa2® 6@ ou® Pas? ¢::(a) 2¢ZZ(3)
Elp Elu Elu
1 1. 000 13.38 | —1.10 | 12. 28 12. 28 1. 000 24,94 | —2.60 | 22. 34 22, 34 1. 000 26.22 | —2.95 | 23.27 | 23. 27
2 . 901 13.38 | —1.15 | 12. 23 13. 58 . 997 24.95 | —2.72 | 22 23 22. 3 . 995 26.24 | —3.08 | 23.16 | 23.3
3 . 624 13.40 | —1.28 | 12,12 19. 44 . 988 25.06 | —3.00 | 22,05 22. 3 . 988 26.40 | —3.40 | 23.00 | 23. 3 23. 3
4 . 322 6. 70 —. 63 6. 07 18. 85 . 495 12. 51 | —1.50 | 11. 01 22. 2 . 493 13.20 | —1.70 | 11.50 { 23.3
5 0 0 0 0 0 0 0 0 0 0 0 0
i ey ¥ Aot .
= gguz(3>+§‘zaz(3))=23.8 ﬁ; ®?; w;=133.3 radians per second

SNETIOUd YHLILATA 40 NOILATOS TVOTHIEWAN Y04 FINAADOUd NOLLVWHOJISNVHIL HALLVEHLI NV
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TABLE 3—ITERATION TO OBTAIN TRANSFORMED THIRD MODE FOR k=« FOR WING WITH CONCENTRATED MASS

!

o J

[Common factors for each column are given under each column heading)

4 3 2 1
Station
Flexure: (a) First eyele (b) Second cycle (¢) Third eycle
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7
o) oo @
Station Yaa'® | 960 |y | ypa? Yaa® | 16? | yn® | Ypa® | yas® gaz(” Yaa® | 1@ | yu® | yea® | yas® za:(a) ggaz(a)
Mitby Aty w? Ny s Mo'by o My .
b Bly ¢ b Fln Bl b Fln 7 P
1(A) 0 448. 1| —448. 1 0 0 0 405. 5| —405. 5 0 0 0 404. 0] —404. 0 0 0
2 . 952| 271. 5| —254. 8] —11. 5.6 1. 000} 243.7| —230.6| —5.9| 7.2 7.2 1. 000] 242. 8| —230.0| —5.9| 6.9 6.9
3 1.000| 104.0f —87.0f —11.9| 5.1 .911) 91.6] —78.8 —6.3] 6.5 7.2 .903] 91.3] —78.5 —6.3 6.5 7.2 7.07
4 .390) 31.00 —24.4 —4 1.9 .339) 27.0] —22.1] —2.5 2.4 7.1 .333] 26.9) —22.0 —2.5 2.4 7.1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Torsion: (a) First cycle (b) Second cycle (¢) Third eycle
1 2 3 4 l ; 2 1 3 | 4 ' 5 ‘ 6 2 3 4 5 6 7
[
s Ba™® | Do
Station $a3? | 0 | Pp? | Ppaa® ' &2 o0:1? | Poa Paz® Sas® $az® 6@ 0D | Ppar® | Pas® %@ | Ta®
|
El Elx El.
1(B) 0 —15. 79 2. 84| 12. 95 —9.46| 2. 57 6. 89 0 —9. 46| 2. 56 6. 90 0
2 —. 083|—15. 81| 2. 96| 12. 88 L0232 —9. 50] 2.68 6. 85 .03 1.3 . 0042| —9. 50 2. 68 6. 86 .04 10. 0
3 —. 304|—16. 03| 3. 26} 12. 80 . 0054 —9.72| 2 .96 6. 80 .04 7 . 0056| —9. 72| 2.94 6. 81 .03 5 7.15
4 —. 150 —8. 00| 1.63| 6. 40 . 0054| —4. 85| 1.48 3. 40 .03 6 . 0042 —4.85 1.47 3. 41 .03 7
5 0 0 0 0 0 0 0 0 0 0 0 0
*)
g:“am) 7.1 2 — w7 w3=244 radians per second
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TABLE 4 —AERODYNAMIC-INERTIA FORCE COEFFICIENTS FOR VARIOUS VALUES OF ¥ FOR EXAMPLE WING

[Common factors for each column are given under the column headings]

Flexure
k Pry Pre Py, Prg Pr, Py

A L X 2 by MY Mby

In B © B B B
0.036 27. 5 — 1444 51. 9 —108. 3 92. 5 —75.6
.12 30. 6 —112. 5 13. 44 —8. 27 92. 5 —75. 6
. 1443 310 —75.2 10. 82 —4. 14 92. 5 —75. 6
. 1590 31.2 —60. 7 9. 61 —2. 53 92. 5 —75.6
.24 32.0 —23.8 5. 82 1. 35 92. 5 —75.6
. 50 33.0 —3.76 2. 39 2. 29 92. 5 —75.6
[ 33.6 1. 397 0 0 92. 5 —75. 6

Torsion
k Qry Qre Qr Qrs Ory Qs

by ? by o? by o? bty ol Aoby o? Mb?y o?

7 I © M B B
0. 036 3. 67 549 —19. 40 68. 3 —75.6 114.7
.12 2. 52 51. 4 —5. 03 11. 42 —75.6 114. 7
. 1443 2. 36 37.5 —4. 05 8. 48 —175.6 114. 7
. 1590 2. 28 32.0 —3.60 7. 24 —75.6 114. 7
.24 1. 98 18. 24 —2.18 3. 67 —75.6 114. 7
. 50 1. 623 10. 74 —. 895 1. 143 —75. 6 114. 7
o 1. 397 . 1409 0 0 —75.6 114. 7

SWHTFOUd HYALLATI J0 NOILATOS TVIIHEWAN HO04d FUNAHIOUWd NOILVWHOISNVHL HAILVHIALI NV
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TABLE 5—~ITERATION TO OBTAIN FIRST MODE FOR

[Common factors for each column are

/i |
o |
7
5 4 3 2 1
Station
Flexure: (a) First cycle
1 2 3 4 5 6 7 8 9 10
Station 1@ yuy Pryyr Proor Pryr Pryor PR Pr Pr FR,,?/R
b, Aiby ol Aoby o?
M ® ©
1 1. 000 0 31.0 0 0 0 31. 0 12. 34 12. 34
2 . 444 0 13. 77 0 0 0 13. 77 14. 35 14. 35
3 111 0 3. 44 0 0 0 3. 44 { 3. 18 { 318 10. 27
4 . 028 0 . 868 0 0 0 . 868 1. 01 55
5 0 0 0 0 0 0 0
Torsion: (a) First cycle
( 3 ' 4 5 6 7 8
Station o1rP ' v Qryyr ’ Qredr Qryr Qredr qr gz
b2y Aby
e — W
B B
1 2. 36 0 0 0 2. 36 0. 939
2 1. 048 0 0 0 1. 048 1. 092
3 . 262 0 0 0 . 262 { - 240
4 . 0660 0 0 0 . 0660 . 077
5 0 0 0 0 0




k=0.1443 FOR WING WITH CONCENTRATED MASS

given under the column headings]

AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

31

/
/{ ! o
7
7/
5 4 3 2 1
Station
- I _ (a) First cycle—Continued
11 12 13 14 15 16 17 18 19 20 21
Pryér P Ve AMp Mg a o a B Ay Yie®
)\ob'y 2 anb’y 5 )\ozb’y l )\;)\ozb'y _1 )\uab‘y _l )\o‘b"y _1
v © w @ Elun C Elx C Elx C El; ©
12. 34 0 0 218. 6
12. 34 12, 34 95. 3 95. 3
14. 35 12. 34 12. 34 13.5 13. 5 123. 3
26. 69 26. 69 81. 8 81. 8
14. 5 14. 5
0 14. 10 39. 03 39. 03 { 2 { 153 41. 5
40. 79 22, 38 54. 6 30.0
. b5 61. 41 61.41 61. 5 33.7 11. 5
41. 34 22. 62 20.9 11. 5
84, 03 84. 03 38. 2 20. 9 0
(a) First cycle—Continued
9 10 11 12 13 14 15 16 17
qr Qruyr Orodr Uk Tg 6 A $12® 1@
Nty Aty 1 Ay 1 Nty 1
e GJu C GJu C El. C
0. 939 0. 939 —3.77 —0. 510
0. 94 0. 94 0. 94
1. 092 1. 092 —4. 71 —. 638
2.03 2. 03 2. 03
. 240 _ _
{ 220 | =850 0 —8. 21 6. 74 .912
—6.18 —6. 18 —3. 38
. 042 . 042 —3. 36 —. 455
—6. 14 —6. 14 —3. 36
0 0
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TABLE 5—ITERATION TO OBTAIN FIRST MODE FOR
Flexure: (a) First cycle—Continued
22 23 24 25 26 27 28 29 30 31
Station Pruyr Pre¢: —Pryr —Preor P1 P Pr Pryyr Fwdn ;1
by Asdy o Aoy o
“® “ M
1 0 0 —10. 82 0 —10. 82 —4. 31 —4. 31 —4. 31
2 0 0 —4. 80 0 —4. 80 —5. 00 -—5. 00 — 5. 00
--1. 099 —1. 099
3 0 0 —1.201 0 —vezon { TRO90 {05 0 0 —1.333
4 0 0 —. 303 0 —. 303 —. 352 —. 193 —. 193
5 0 0 0 0 0
Torsion: (a) First eyele—Continued
18 19 20 21 22 23 24 25
Station Qruy1 Qred1 — Q1R — Qre0r q ';71 71'1 612,/1/1
1221 w? 7\__;1)27 w? )‘_0b27 o?
H “
1 0 0 4. 05 0 4. 05 1. 612 1. 612
2 0 0 1. 798 0 1. 798 1. 874 1. 874
. 412 . 412
3 0 0 . 450 0 . 450 { 413 { oae 0
4 0 0 . 1143 0 . 1143 . 133 . 073
5 0 0 0 0 0




AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF

£=0.1443 FOR WING WITH CONCENTRATED MASS—Continued

(a) First cycle—Concluded

FLUTTER PROBLEMS

33

32 33 34 35 36 37 38 39 40 41
- - y1e? iy
, ,V{ AMI . MI, * “ “ 8 Ay yu® Y120 iyt
Aoby . Ao2by . Ao?by 1 Aihothy 1 Aodby 1 Ao'by 1 Aty 1
v © P EI. C Elp © Ely © Elu C Elx C
0 0 —70. 38 218.6—70.38%
—4.31 —4.31 —31. 12 —31. 12
—4.31 —4.31 —4.73 —4.73 3926 | oo
—g. 31 —¢. 31 s 05 s o5 —26. 39 —26. 89 '
—13.62 | —13.62 { —59 { —5% —12. 87 374—116.0
—10. 64 —5.84 —17. 08 —9. 35
—19. 46 —19. 46 —19. 46 —10. 67 —8.52 | .
—10. 83 —5.95 —6. 41 —3. 52
—25. 41 —25. 41 —11.70 —6. 41 0
(a) First cycle—Concluded
26 27 28 29 30 31 32 33
= - &1 iy
Qredr qr T [ A ou? 611 @ $180 T gD
Aob?y Aob?y 1 APbRy 1 Aoty 1
v O GJy C GJu T EI. C
1. 612 9. 51 1.288 f .
1. 612 1. 612 1. 61
1. 874 7. 90 LO70 | . .
3. 486 3. 486 3. 49
0 . 500 4. 41 597 | ...,
3. 986 3. 986 2.18
. 073 2. 23 . 302
4. 059 4. 059 2. 23
0 0
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TABLE 5.—ITERATION .TO OBTAIN FIRST MODE FOR

Flexure: (b) Second cycle (¢) Third cycle
1 2 3 4 5 1 2 3 4
(3) y217(3)
Station v12® e e e %ﬁ@ Y12® e v1e® yu®
b Mty 1 Ay 1 b Nty 1
El. C El. C EIu. C
1 1. 000 0 263. 0 —83. 22 263.0—83.22; 1. 000 0 267. 5 —82. 89
2 . 563 . 0015 149. 7 —46.67 | . ______. . 569 . 0020 152. 3 —46. 47
3 . 189 . 0021 51. 2 —15. 42 270—84.97 . 194 . 0028 52. 1 —15. 33
4 . 052 . 0007 14. 4 —4.22 | L. . 054 . 0012 14. 6 —4. 20
5 0 0 0 0 0 0 0 0
Torsion: (b) Second cycle (¢) Third eycle
1 2 3 4 5 1 2 3 4
YR C)) .
Station $1e® du? $1® $u'® %1}:(_2){% ‘i@ ou@® 18P du
Moty I Mty 1
EI. C Elu C
1 —0. 00382 0. 00466 —1. 407 1. 601 353+12.1¢ —0. 00660 0. 00399 — 1. 570 1. 594
2 —. 00407 . 00358 —1. 537 1.353 | - .__ —. 00680 . 00300 —1. 690 1. 350
3 —. 00457 . 00126 —1. 829 . 773 414—55.12 —. 00716 . 00068 —1. 963 . 764
4 —. 00228 . 00064 —. 912 .392 | L. .. —. 00358 . 00036 —. 982 . 887
5 0 0 0 0 0 0 0 0

AT EZ @e®+iyu®)
2 L X (yin® +dyu®)

2 (1@ +i¢u®)

= (269.5—82.27)

2 (p1r® +igy®)

Aoty 1,

/423000 .
BT, o o= —m—39.7 radians per second;




AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

k=0.1443 FOR WING WITH CONCENTRATED MASS—Concluded

(¢) 'I'hird cyele—Concluded

(d) Fourth cycle

1 5 1 2 3 4 5 6
#ig® + iy @ ) ) ® ® yir® +iyy® 2 (12 iy ®)
‘ 112D+ iy ® Y1z yu Yir yu N1z ® F iy @ T 2@ g ®)
e
)l(f:“Y« 1 Aoty 1 Aoty 1
Elp C Elu C Elu. C
l 267.5—- 82.89/ 1. 000 0 268. 6 —82. 56 268.6 —82.567
,,,,,,,,,,,, . 569 . 0030 153. 0 —46. 29 [
268 —83.2/ . 194 . 0027 52. 4 —15. 28 270—82.5/ 269—82.8/
____________ . 054 . 0011 14. 7 —4. 18 \
0 0 0 0 '
| _ ! |
(¢) Third eycle—Concluded (d) Fourth cycle
5 1 2 3 4 5 6
d1r® Fig W ©® @ ) ® $129 +igy® Z (129 +ipu®)
d1r® 1@ ir u dir du $1rW +1g W 2 (1aW +ipy®)
Aoty 1 Moty 1
Elp C Elu C
282—~71.5¢ —0. 00704 0. 00379 —1. 591 1. 589 270—80.81
e —. 00720 . 00281 —1.711 1.340 | o ________
282—79.8¢ —. 00751 . 00052 —1.977 . 758 269—82.4¢ 270—81.5:/
____________ —. 00376 . 00028 —. 988 . 384 e
0 0 0 0
Ga1 = :;(?()2/52= ~—0.305; v.=—é 0.31%3=91.6 feet per second



REPORT 1073—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE 6 —ITERATION TO OBTAIN TRANSFORMED SECOND

[Common factors for each column are

7/
7 ! e I I
/)
e
3 4 3 2 I
Station
Flexure: (a) First cycle
! | ‘ T
1 ‘ 2 3 ‘ 4 l 5 ’ 6 ( 7 { 8 9
n T T Lo e
. ! ' . Vaze® + 1Ya2s?
Station Ya2r? | Ya2r® Yer? : g’V Yorr'? l yaur? * Yare® ‘ Yar1® M
b Mfby 1 Aoty 1
Elp C Elx C
1 () 0 0 —818. 4 41. 38 818. 4 l —41. 38 0 { 0
2 0 0 —468. 8 23. 48 464. 5 21.8 —4.3 1.7 |- - e
3 0 0 —161. 4 7. 90 158. 8 —35.7 —2.6 2.2 ... e
4 0 0 —45. 4 2.19 44. 5 —1.31 —. 9 .88 | .. I
5 0 0 0 0 0 0 0 0
Torsion: (a) First eycle
1 ‘ 2 3 4 5 , 6 g 7 ‘ 8 9
1
o Pa2 2 + 1’4’1:2 @
Station Gazr® Dazs? P o Spn'P EYSTALY ‘ bazr® Ga2s? “‘——‘—”’¢022(,, T 2-%2:“)
1
Aoty 1
Elp C
| |
1 1. 000 0 28. 76 —4 45 J —5.62 .| 335 23. 14 — 1. 10 23.14—1.10¢
2 . 875 0 26. 25 —3.8 | —579 2. 56 20. 46 — 133 | e
3 . 529 0 19. 42 —2.35 —6. 12 .73 13. 30 —1. 62 25.2 —3.067
4 . 274 0 9. 92 —1. 222 —3.06 . 379 6. 86 —.84 | e.
5 0 0 0 0 0 0 0 0




AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

given under the column headings]

MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

37

/ !
=]
7
5 3 2
Station
(b) Second eycle
1 2 3 4 5 6 7 8 9
22 ® iy,
Yare'® Yarr® yor®? yu® Year® Yorr? Ya2z® YazsD ﬁﬁj‘—”
i
|
b Aty 1 My 1
Elp C Elu C
0 0 —888. 5 104. 65 888. 5 —104. 65 0 0
—. 188 . 064 —510. 8 61. 60 504. 5 —57.1 —6.3 4.5 37—11.2¢7
—. 117 . 090 —177. 0 22. 28 172. 5 —17.7 —4.5 4.6 43—6.17
—. 041 . 036 —50.0 6. 45 48 4 —4, 64 —1. .81 ...
0 0 0 0 Q Q 0 0
(b) Second cyele
1 2 3 4 5 6 7 8 9 {'
i
i} . Garp® e, ®
b2 barr? $ur? 51D $u1r® b1 Ga2r® Ga2t® %Q::m—li’a:?”
|
My 1 |
Elu C !
. S A !
1. 000 0 30. 80 —6. 92 —5. 88 4. 05 24. 92 —2 87 24.92—2.87/ ]
. 886 —. 0153 28. 36 —6. 33 —6.12 3.21 22. 24 —-3.12 ..
577 —. 0426 21. 60 —4. 59 —6. 61 . 24 14, 99 —~3.35 26.2 —3.86i |
. 298 —. 0221 11. 01 —2. 36 —3.30 . 63 7.71 —1.78 ...
0 0 0 0 0 0 0 0 )
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TABLE 6—ITERATION TO OBTAIN TRANSFORMED SECOND MODE

Flexure: (¢) Third cycle

, i
‘T 1 ‘ 2 ' 3 4 5 ‘ 6 ‘ 7 8 9
’ | &
@ @ ! @ I @ ® ! @ ; @ ) Yl 4 iyt
Station Ya2Rr Ya21 , Yur s Yur ’ Yok i Your ; Yarit Yaz1 Yorr® + TYart®
|
b Mtby 1 Aoty 1
Elu C ElxC
| |
1 (A) 0 0 —93L.9 , 156.25 | 93L9 | 13 25 | 0 Lo
2 —. 271 . 149 —537.2 ‘ 92. 18 , 530. 5 —86. 3 —6.7 ‘ 5.9 28—6.3¢
3 —. 199 . 161 —187.2 32. 98 181, 2 —27.7 l —6.0 3.3 31—1.47
4 —. 071 . 065 —353.0 9. 60 50. 8 —7.41 —2.2 ’ 2. 19 32—1.47¢
5 0 0 0 0 0 0 ! 0 ' 0
| i i
Torsion: (¢) Third eycle
1 ' 2 3 l 4 ; 5 ' 6 t 7 8 9
1 ‘ . E ‘ & (i)+ '4, [EH]
i @ a2k idart
Station Paze™® Pa2l® bor@ $o1® ‘ de1r® i 5 | gaea® Gazs'P Gk T 1Go2r®
J i
)\04’)’ 1
EIx C
‘ ] } :
1 1. 000 0 32. 38 —8. 42 —6.00 | 4. 60 26. 38 —3. 82 | 26.38—-3.82¢
2 . 904 —. 0221 29. 90 —7.81 | —6. 29 3.71 , 23. 61 —4. 10 26.3— 3.90¢
3 . 609 —. 0644 23. 10 —5. 99 —6.93 1. 64 16. 17 —~4, 35 L27.0— 4.29¢
4 . 314 —. 0333 11. 80 —3.08 — 3. 46 .84 8. 34 —2. 24 27.0— 4.267
5 0 0 0 0 0 0 [4] 0

Z (yaze® + iya®) X (Paze™® 4 ipa2s?) - Aoly 1,
T Wt ® F Yorr™ T T (Gons® F igear®) | F29 3780 L &



AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

FOR k=0.1443 FOR WING WITH CONCENTRATED MASS—Concluded

(d) Fourth ecycle

39

1 2 3 4 5 6 7 8 9 10
a2r'® + 1y a2 P T Ya2e'® + 2y a2r'®)
W o) ) D) () ) ® ® Yarr Ya2r Ya2r Ya21
Yazr Yaor Yor Yor Ynr Yoir Yazr Ya2r Y2z ® T iy aar® 3 (Ya2z® T 1Y ass)
b Agtby 1 Moty 1
Elu C Elu C
0 0 —941. 0 165. 58 941. 0 —165. 58 0 0
—. 281 . 184 —543. 3 98. 06 534. 9 —91. 8 —8. 4 6. 3 31—2.0¢
—. 252 . 165 —190. 0 35. 82 183. 1 —29. 50 —6.9 6. 32 31—5.0: 31—3.414
—. 094 . 069 —54.0 10. 42 51. 3 —7.93 —2.7 2. 49 31—3.5¢
0 0 0 0 0 0 0 0
(d) Fourth eycle
1 2 3 4 5 6 7 8 9 10
002" + ipaar® T (pa2e® +ipaar?)
G2t $au® dor® dur'? I TN ba2r'® $a2rt? 5222 ® 1 1hazt® 3 (Gaze® I ipazt™®)
ElIuC
1. 000 0 33. 16 —8.75 —6.03 4. 68 27.13 —4. 07 27.13—4.07:
. 901 —. 0256 30. 70 —8.15 —6. 33 3. 80 24, 37 —4. 35 27.1— 4.05:
. 624 —. 0749 23. 92 —6. 30 —6. 98 1. 73 16. 94 —4. 57 27.7— 4.02; 27.3—4.05¢
. 322 —. 0384 12. 20 —3.24 —3.49 88 8. 71 —2. 36 27.5— 4.06z
0 0 0 0 0 0 0 0

w;=121.0 radians per second; g,;= —0.1308; v,=280 feet per second
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TABLE 7—~ITERATION TO OBTAIN TRANSFORMED THIRD

[Common factors for each column are

e
e
5 3 2 1
Station
Flexure: (a) First cycle
1 2 3 ‘ 4 5 6 7 8 9 10 11
Ya3r® + iYaar®
Station Yasr® Yars? Yot Yur® Yor® Ymr® ypa2k® | Yoarr? | Yar® | Yasr® %ﬁw
Aotby 1 Aty 1
Elu C Elu C
1(A) 0 0 368. 1 —73.82 —368. 1 73. 82 0 0 0 0
2 . 850 0 223. 1 —43. 43 —209. 2 41. 05 —2.7 1. 37 11. 2 —1.01 | . __ . ______
3 1. 000 0 85. 4 —15. 60 —71.5 13. 26 —2.3 1. 45 11. 6 —. 89 11.6—0.89:
4 . 350 0 25. 4 —4. 45 —20.1 3. 59 —. 9 57 4.4 —. 29 | o a_._
5 0 0 0 0 0 0 0 0 0 0
Torsion: (a) First eycle
1 2 3 4 5 6 ( 7 { 8 9 ( 10 ' 11
D 4 uar®
w (m w n [¢)) m ()] (D @ &} Pu3n " T lbaar?
Station Pa3r Pasl 233 234 dp1rt L1374 Poa2r' | oot a3k Pasr’ bt T idaar®
Moty 1
I C
1 (B) 0 0 —10. 24 1. 687 2. 32 —1. 897 7. 92 0. 210 0 0
2 0 0 —10. 30 1. 592 2. 45 —1. 551 7.15 —. 010 —. 70 031 | L
3 0 0 —10. 60 1. 067 2.72 —. 742 5. 05 —.445 | —2.83 | —. 120 | __. . ______._ ..
4 0 0 —5. 28 . 564 1. 36 —. 378 2. 60 —.231 | —1.32 | —. 045 | ..______.._ L
5 0 0 0 0 0 0 0 0 0 0




MODE FOR £k=0.1443 FOR WING WITH CONCENTRATED MASS

AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

given under the column headings]

41

2{ | ® ! |
7/
5 4 3 2 1
Station
(b) Second cycle - -
1 2 3 4 5 6 7 8 9 10 11
Yazr® + Y ass®
Yas® Yaar? Yur® . Yor'? Y@ your? Ybazr® Yba2r? Yasg® Yasr @ Yosn® F iyoar®
b Adtby 1 Aty 1
Elu C EIu C
0 0 484, 0 —83. 49 —484. 0 83. 49 0 0 0 0
. 967 —.013 296. 2 —48. 57 —274. 8 46. 14 —4. 5 2. 08 16. 9 —. 35 17.56—0.13:
1. 000 0 113. 0 —16. 82 —93.9 14. 80 —3.8 2. 23 15. 3 .21 15.34+0.21:
. 379 . 004 34. 4 —4. 73 —26. 3 3. 97 —1. 4 . 88 6. 6 L1200 | .
0 0 0 0 0 0 0 0 0 0
(b) Second cycle
1 2 3 4 5 6 7 8 9 10 11
@ 4 fehgar®
@ @ ) @ @ @ @ ® @ @ Pazr™ T 1basr
ba3r Baar o35 Por 23 (2374 bbazr Pbazl Pasr basr barr® T iGaat®
ko“y 1
El.C
0 0 —15. 99 1. 640 3. 12 —2. 392 12, 87 0. 752 0 0
—. 060 —. 0019 —16. 02 1. 521 3. 26 —1. 938 11. 61 . 358 —1. 15 —. 059 | .-
—. 241 —. 0289 —16. 00 . 858 3. 59 —. 872 8. 23 —. 460 —4. 18 —. 474 17. 4—0.116¢
—. 113 —. 0125 —8.07 . 472 1. 80 —. 445 4. 23 —. 242 —2. 04 —. 215 18. 0—0.0937
0 0 0 0 0 0 0 0 0 0
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TABLE 7—ITERATION TO OBTAIN TRANSFORMED THIRD MODE

Flexure: (¢) Third cycle

1 2 3 4 5 6 7 8 9 10 11
@ -y gy @
Station yuw“” Yasr® Ysr® Y@ Yur® you® Yba2r® Ybart® Ya3e® Yasr® %
Niby 1 iy 1
b Eln C EluC
1 (A) 0 0 515. 9 —102. 86 —515. 9 102. 86 0 0 0 0
2 1. 105 —. 038 311. 8 —59. 83 —293. 8 57. 3 —4,. 6 2. 21 13. 4 —. 29 12.240,167
3 1. 000 0 118. 5 —20. 69 —100. 5 18. 51 —3.9 2. 37 14. 1 .19 14.1+0.192
4 . 431 . 002 35. 2 —5.93 —28. 2 5. 00 —1.5 .93 5.5 0 12.7—0.062
5 0 0 0 0 0 0 0 0 0 0
Torsion: (¢} Third cycle
1 2 3 4 5 ‘ 6 7 8 9 10 11
f (¢ y [¢)]
Station Pasn® baar® dor® P ® dur® ‘ dour® dba2e® | Gpa2® | bazr® Sazr™® %
)\0")’ 1
EluC
1 (B) 0 0 —16.73 1. 942 3. 26 —2. 658 13. 47 0. 716 0 0
2 —. 075 |—. 0028 —16. 78 1. 808 3. 44 —2.174 12. 17 .300 | —1.17 | —. 066 15.6-0.30:
3 —. 273 |—. 0272 —16. 72 1. 053 3. 82 —1. 037 863 | —. 533 | —4.27 | —. 517 15.7+40.33¢
4 —. 134 |—. 0122 —8.45 . 577 1. 91 —. 529 4,43 | —. 279 | —2.11 | —.231 15.840.29¢
5 0 0 0 0 0 0 0 0 0 0
1T X Yasr™® + 1y0r?) 2 (Pa3r® +idaur®)]_ L Aofy 1
5 L E ern® Fi0esr® T E (baon® i) | 1482H04450 pp
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AN ITERATIVE TRANSFORMATION PROCEDURE FOR NUMERICAL SOLUTION OF FLUTTER PROBLEMS

FOR k=0.1443 FOR WING WITH CONCENTRATED MASS—Concluded

(d) Fourth cycle

43

1 2 3 4 5 6 7 8 9 10 11 12
: ® iy aar™® 2 (Yase® +3yaaur®)
® o ) W 0 10 o ) ® ® Yasr Yaar L
Yasr Yasr Yor Yor Yur Your Ybazr™ Ybaar Yair Yaar Va1 ® F iyaat® T (Yasz @+ 1Yaur™)
b Aoty 1 Aty 1
Elu C Elp C
0 0 494. 8 |—86. 24 | —494. 8 86. 24 0 0 0 0
. 952 —. 033 300.3 |—50.13 |[—281. 6 47.75 | —56.1 2. 35 13. 6 —. 03 14. 34-0.46:
1. 000 0 115.2 |—17.33 | —96. 2 15.31 | —4.3 2. 53 14. 7 .51 14. 74+ 0.51¢ 14. 53+ 0.5477
. 390 —. 005 34.4 ] —4.87 | —26.9 4,12 | —1.7 1. 00 5 8 .25 14. 84 0.83:
0 0 0 0 0 0 0 0 0 0
(d) Fourth cycle
1 2 3 4 5 6 7 8 9 10 11 12
d’uﬂR(s) + i¢a31(6‘\ z (¢03R(6) + iﬁbaal (5))
$aar® | ¢ar® e b1 $ur® | oour® | dpa2r® | drer® | Paar® $aar® Gen® T+ e ® T (Gas2® T iduar®)
Aty 1
EluC
0 0 —17.68 | 1. 629 3.18 |—2.460 | 14. 50 0. 831 0 0
—.083§—.0036 {—17. 70 | 1. 511 3.33 |—1.992 | 13.09 .38 | —1.28 | —. 096 15.44-0.492
—. 304 |—. 0326 |—17. 53 . 843 3. 67 —. 901 9. 28 —. 530 | —4.58 | —. 588 15.14-0.32¢ 15.1240.3437
—.150 [—. 0144 | —8. 86 . 470 1. 84 —. 459 4. 77 —. 278 | —2.25 | —. 267 15.14-0.337
0 0 0 0 0 0 0 0 0 0 |

w3 = 168.9 radians per second; g,;=0.030; vs=390 feet per second




TABLE 8.—COMPUTATION OF TRUE SECOND MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

[Flexural functions are in terms of b; torsional functions are in radians; 9_ 1=F,=8.65— 1.600i]
2

§|| | o !
7
/
5 4 3 2 1
Station
Flexure
1 2 3 4
Station ®
0 Gy @) = . . .
yb[l"zxez(y_nl—r:}{-lglllu) Vit s Yarr® + 1Y a2r® Yart+iyer
1 (A) 941.0—165.581 108.8+-0.961 0 108.8+40.962
2 61.740.85¢ —8.4+6.37 53.3+7.157
3 || . 21.06-+0.49: —6.9+6.32¢ 14.2+6.811
4 | .. 5.904-0.18¢ —2.7+42.49¢ 3.242.67:
[ J I 0 0 0
Torsion
1 2 3 4
Station (
DL, = . , .
¢b1151212(::;ﬁf12{#”) SRt idir barr® - 1pgar® dortidar
1 B) | | oo —0.7724+0.401+ 27.13—4.071 26.36— 3.677
2 | | . —0.786+0.294¢ 24.37—4.351 23.58—4.067
3 | | - —0.81640.048: 16.94—4.574 16.12—4.52¢
4 | . —0.409—(})-0.0261' 8.71—2.367 8.30—2.33¢
LS O 0 0

SOILAVNOYAY HOd HALLINWOD XHOSIAAV TVNOILVN-—EL0T LHO0dTH
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TABLE 9.—COMPUTATION OF TRUE THIRD MODE FOR k=0.1443 FOR WING WITH CONCENTRATED MASS

[Flexural functions are in terms of b; torsional functions are in radians; G_ 1=F3=16.97—6.09¢;
3

G

G

—1=F5=10.940—0.3137]

% 1
7 & (
/
5 4 3 2 1 ‘;
Station ‘
Flexure
1 2 3 4 5 6 7 8 9 10
Station | |, 50+ WaaW=1| Yy = ) . , . ) ) . )
Fi(yurtiyuD+ | iy + Faos(yrzrt+iyi2D)| Fualyur—+iyns) Yir+ et Yur+iy nir+iyu Yarrt tYan1 Ya3r® + 1y aar'® Ysrtiyar
Fulynr~+iyun) | Fus(yor +iYazr)
1(A) —494.8+86.24¢ |______.________ 56.3+12.300 | —551.1473.94; 50.14+29.7¢ | —30.2—6.57| |19.94 23.20 0 0 19.94-23.2¢
D YUy Sy R RpUpUUUpRI U PSR URIUIIp RO IR U U S OOV 11.26413.23 | —5.56+0.647 13.6—0.03¢ 19.3+13.841
3 | e o e ||l R IS 3.80+4.56¢ —4.8741.05¢ 14.74-0.51¢ 13.6+6.12¢
ROy SO U UUNUY RN SR SRR Y PRI 1.064-1.287 —1.91+0.42¢ 5.84-0.25¢ .~ 5.04+1.95¢
5 U U FRy U U PSPU Y [ U | 0 0 0 0
Torsion
1 2 3 4 | 5 6 | 7 8 9 10
Station P +igpu®=|  dpar? + ) . . i . . . .
Fuldurtidun |  t¢sar'® = |Ful¢prtiden)| Fu(durtion) | éurTidur durtiur ¢r1rtiou ba2rt idazr $a3r® +idaar'? dar+idar
Fou(grortidun) |Fu(dar+ider) ] ‘
1B) | |ccmoemoooool 14.504-0.831% |- oo oo |ea_oL. ! ___________________________ —0.227—-0.089: | |13.5845.43¢ 0 13.35+45.34¢
2 U U (S USpRU PR RSO SR N R —0.208—0.1137} 12.3744.55: —1.28—0.0962 10.884-4.34:
2 S SOy UORO R SRRSO PSSP PR FESEU S —0.162—0.164¢ 9.034-2.46¢ —4.58—0.588¢ 4.204-1.714
1 U ) PR IS L P —0.081—0.0817 4.6441.25¢ —2.25—0.267:; 2.31-({)—0.90i
2 S U UpR Oy USSP JUpUEp U 0 0 0

SHHTF0Yd HHILATAd JO0 NOILLATOS TVIIHAWAN HO0d HINdADO0UYd NOILVIWHOASNVIL HALLVAHTILI NV
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